a marshall cavendish 28 computer course in weekiy parts

LEARN PROGRAMMING- FOR FUN AND THE FUTURE

50

\%
crapararaanamas

UK £1.00
Republic of Ireland £1.25
Malta 85c
Australia \$2.25
New Zealand \$2.95

Vol. 3

BASIC PROGRAMMING 60

CONES, CURVES AND CUTS

The curves derived from cuts through a cone fascinate mathematicians. Here are programs to draw and rotate them

GAMES PROGRAMMING 28

THE MIDAS TOUCH

Here are the routines to enable you to play the gold game. With good strategy, success could be yours

MACHINE CODE 28

COMMODORE HI-RES

More machine code for Commodore users to give a high resolution graphics facility

APPLICATIONS 16

A PLAY ON WORDS 878

With the text editing facilities completed you can now put it on file in the second part of this article

PERIPHERALS

COMPUTER-CONTROLLED ROBOTS

 884From Turtles to Beasties we show how some of today's
Robots can be made to work for you

INDEX

The last part of INPUT, Part 52 , will contain a complete, cross-referenced index. For easy access to your growing collection, a cumulative index to the contents of each issue is contained on the inside back cover.

PICTURE CREDITS

Front cover, Dave King. Pages 857, 858, Ian Stephen. Pages 858, 859, Berry Fallon Design. Pages 860, 861, 862, Digital Arts. Pages 865, 866, 870, Johanne Ryder. Pages 872, 874, Dave King. Pages 878, 881, 882, Kevin O'Brien. Pages 884, 886, Graeme Harris.

© Marshall Cavendish Limited 1984/5/6
 All worldwide rights reserved.

The contents of this publication including software, codes, listings, graphics, illustrations and text are the exclusive property and copyright of Marshall Cavendish Limited and may not be copied, reproduced, transmitted, hired, lent, distributed, stored or modified in any form whatsoever without the prior approval of the Copyright holder.

HOW TO ORDER YOUR BINDERS

UK and Republic of Ireland:
Send $£ 4.95$ (inc p \& p) (IR£5.95) for each binder to the address below: Marshall Cavendish Services Ltd, Department 980, Newtown Road, Hove, Sussex BN3 7DN
Australia: See inserts for details, or write to INPUT, Times Consultants, PO Box 213, Alexandria, NSW 2015 New Zealand: See inserts for details, or write to InPUT, Gordon and Gotch (NZ) Ltd, PO Box 1595 , Wellington Malta: Binders are available from local newsagents.

BACK NUMBERS

Back numbers are supplied at the regular cover price (subject to availability).
UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services, Newtown Road, Hove BN3 7DN
Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST

Our Subscription Department can supply copies to any UK address regularly at $£ 1.00$ each. For example the cost of 26 issues is $£ 26.00$; for any other quantity simply multiply the number of issues required by $£ 1.00$. Send your order, with payment to:
Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN
Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders for binders, back numbers and copies by post should be made payable to:
Marshall Cavendish Partworks Ltd.
QUERIES: When writing in, please give the make and model of your computer, as well as the Part No., page and line where the program is rejected or where it does not work. We can only answer specific queries - and please do not telephone. Send your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA.

INPUT IS SPECIALLY DESIGNED FOR:

The SINCLAIR ZX SPECTRUM ($16 \mathrm{~K}, 48 \mathrm{~K}, 128$ and +), COMMODORE 64 and 128, ACORN ELECTRON, BBC B and $\mathrm{B}+$, and the DRAGON 32 and 64 .
In addition, many of the programs and explanations are also suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and TANDYCOLOUR COMPUTER in 32 K with extended BASIC. Programs and text which are specifically for particular machines are indicated by the following symbols:

CONES, CURVES AND CUTS

	SLICING THE CONE
DRAWING A CIRCLE, ELLIPSE,	
	PARABOLA AND HYPERBOLA
	ROTATING THE CURVES
	PRACTICAL APPLICATIONS

Abstract

The simple cone is one of the most fascinating mathematical shapes, producing a whole family of important curves. Here are some programs to explore its attributes

Curves have fascinated mathematicians from the earliest days, and the simpler and more elegant the curves were, the more important they seemed. The early Greek mathematicians were very keen to keep maths as simple as possible, so when it was discovered that an entire family of curves-known as conic sections-could be obtained simply by slicing through a cone, it seemed obvious that cones must have some special significance. Depending on how the cone is sliced, you can obtain a circle, an ellipse a parabola or a hyperbola.

In fact the beauty of these curves is that they are not mere mathematical abstractions, but crop up time and again in everyday life, and provide an accurate description of real physical phenomena.

There are, of course, other simple curves that are found in nature that are not sections of a cone. The shape of a rope or chain hanging between two points is one. It is called a catenary, and even though it looks rather like a parabola it is subtly different, and is described by quite different equations.
But the conic sections are important as they are often related to the way things move and so are needed for any realistic program.

A slice taken at an angle between 90° and half the angle between the lines (called the semi-vertical angle of the cone) gives a section called an ellipse.

A slice made at an angle to the axis which equals the semi-vertical angle gives a parabola.

A slice made at an angle less than the semivertical angle gives a section with two parts called an hyperbola. There are two parts to the hyperbola because the slice cuts both the upper and lower cones.

There are two special cases. If a slice is taken which includes the axis, that is, the cones are cut in half from top to bottom, then two straight lines are obtained-the ones used to generate the cone in the first place. This is really a special case of the hyperbola. Also if a slice at 90° to the axis is taken between the two cones then all you have is a point, which is just a circle of zero radius.
The drawings below and on the next page should make it clear how all these shapes are obtained. If you like, you can easily make the slices yourself by cutting out a cone from some suitable material-rolled up paperand then slicing it in different directions. You'll only need a double cone if you want to make a real hyperbola, as this always consists of two parts, but you can model half of it.

DRAWING THE CURVES

All the curves are generated by simple equations, some of which you will already have seen. To enable you to use hi-res graphics commands on the Commodore 64 you need a Simon's BASIC cartridge, or INPUT's machine code utility, starting on page 748. And on the Vic, a Super Expander cartridge.

THE CIRCLE

The equation of a circle is given by
$\mathrm{X}=\mathrm{A}^{*} \mathrm{COS}$ theta
$\mathrm{Y}=\mathrm{A}^{*}$ SIN theta
where A is the radius, X, Y is a point on the circumference, and theta is the angle made with a fixed line-usually the X axis.
The first program draws a circle with radius A , centred in the middle of the screen:

```
10 CLS
15 LET a = 70
25 LET \(x=a\) : LET \(y=0\)
30 PLOT \(127+x, 70+y\)
40 FOR \(\mathrm{t}=\emptyset\) TO \(2^{\circ}\) PI STEP . 2
50 LET \(x=a^{*} C O S\) t: LET \(y=a^{*}\) SIN t
60 DRAW x - PEEK 23677 + 127,
    \(y\)-PEEK \(23678+7 \varnothing\)
70 NEXT t
```

10 HIRES 0,1 :COLOUR 1,1
$15 A=60$
$20 \mathrm{C}=\operatorname{ATN}(1) / 45$
$30 X X=160+A: Y Y=100$
40 FOR TH $=0$ TO 360 STEP 10
$50 X=A^{*} \operatorname{COS}\left(T H^{*} \mathrm{C}\right): Y=A^{*} \operatorname{SIN}\left(T H^{*} \mathrm{C}\right)$
60 LINE XX,YY,160 + X,100 + Y, 1
$65 X X=160+X: Y Y=100+Y$
70 NEXT TH
80 GOTO 80

C

10 GRAPHIC 2:COLOR 6,6,5,5
$15 A=200$
$20 \mathrm{C}=\operatorname{ATN}(1) / 45$
$25 X=A: Y=\emptyset$
30 POINT $1,512+X, 512+Y$
40 FOR TH $=\emptyset$ TO 360 STEP 10
$50 X=A^{*} \operatorname{COS}\left(T H^{*} \mathrm{C}\right): Y=\mathrm{A}^{*} \operatorname{Sin}\left(T H^{*} \mathrm{C}\right)$
60 DRAW 1 TO $512+X, 512+Y$
70 NEXT TH
80 GOTO 80

E

10 MODE 1
$15 \mathrm{~A}=200$
20 VDU29,640;512;
$25 X=A: Y=\emptyset$
30 MOVEX,Y
40 FOR TH $=\emptyset$ TO 360 STEP 10
$50 X=A^{*} \operatorname{COS}(\operatorname{RAD}(T H))$:
$Y=A^{*} \operatorname{SIN}(\operatorname{RAD}(T H))$
60 DRAW X,Y
70 NEXT TH

10 PMODE4:PCLS:SCREEN1,1

$15 \mathrm{~A}=60$
$20 \mathrm{C}=\operatorname{ATN}(1) / 45$
30 LINE - (127 + A,95),PRESET
40 FOR TH $=0$ TO 360 STEP 10
$50 \mathrm{X}=\mathrm{A}^{*} \operatorname{COS}\left(\mathrm{TH}^{+} \mathrm{C}\right)$:
$Y=A^{*} \operatorname{SIN}\left(T H^{*} C\right)$
60 LINE - $(127+X, 95+Y)$,PSET
70 NEXT TH
80 GOTO 80
The FOR ... NEXT loop in Lines $4 \emptyset$ to $7 \emptyset$ is the part of the program that draws the circle by repeatedly drawing straight line segments at intervals of 10 degrees (or .2 radians).
The radius of the circle
is set at Line 15 .

THE ELLIPSE

The equation for an ellipse is very similar to that for a circle. For an ellipse with major axis 2 A and minor axis 2 B , the position of any point on the circumference is:
$\mathrm{X}=\mathrm{A}^{*} \operatorname{COS}$ theta
$\mathrm{Y}=\mathrm{B}^{*}$ SIN theta
The shape of the ellipse-how squashed it is is determined by A and B. Change these lines:

C
$16 B=30$
$50 \mathrm{X}=\mathrm{A}^{*} \operatorname{COS}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right): Y=\mathrm{B}^{*} \operatorname{SIN}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right)$
$16 \mathrm{~B}=100$
$50 \mathrm{X}=\mathrm{A}^{*} \operatorname{COS}\left(\mathrm{TH}^{*} \mathrm{C}\right): \mathrm{Y}=\mathrm{B}^{*} \operatorname{SIN}\left(\mathrm{TH}^{*} \mathrm{C}\right)$

The circle

$16 B=30$
$50 X=A^{*} \operatorname{COS}\left(T H^{*} \mathrm{C}\right): Y=B^{*} \mathrm{SIN}$
(TH*C)

THE PARABOLA

The size of the parabola depends on the value of a variable T , the equations are:

$$
\begin{aligned}
& \mathrm{X}=\mathrm{T}^{2} \\
& \mathrm{Y}=2^{*} \mathrm{~T}
\end{aligned}
$$

The value T can vary from infinity to minus infinity, but quite a reasonable section of the parabola can be seen between $\mathrm{T}=2$ to $\mathrm{T}=-2$. In the program these values then have to be scaled up by a factor M to fit on the

The ellipse

TV screen. These are the programs to draw the parabola:

60 DRAW x - PEEK 23677 + 127,
$80+\mathrm{y}$ - PEEK $23678+80$ 70 NEXT t

C

10 HIRES 0,1:COLOUR 1,1
$15 \mathrm{M}=23$

The hyperbola

The parabola

$2 \emptyset \mathrm{C}=\operatorname{ATN}(1) / 45$
$3 \emptyset X X=160+M^{*} 4: Y Y=1 \emptyset 0-4^{*} M$
40 FOR T $=-2$ TO 2 STEP . 05
$50 X=M^{*} T \uparrow 2: Y=2^{*} M^{*} T$
$6 \emptyset$ LINE XX,YY,160 + X,100 + Y, 1
$65 X X=16 \emptyset+X: Y Y=1 \emptyset \emptyset+Y$
70 NEXT T
$8 \emptyset$ GOTO 80

10 GRAPHIC 2:COLOR 6,6,5,5
$15 M=5 \emptyset$
$2 \emptyset \mathrm{C}=\operatorname{ATN}(1) / 45$
$25 X=M^{*} 4: Y=-M^{*} 4$
30 POINT 1,512+X,512+Y
40 FOR $T=-2$ TO 2 STEP . 05
$50 \mathrm{X}=\mathrm{M}^{*} \mathrm{~T} \uparrow 2: Y=2^{*} \mathrm{M}^{*} \mathrm{~T}$
60 DRAW 1 TO $512+X, 512+Y$
70 NEXT T
80 GOTO 80
E
10 MODE 1
$15 \mathrm{M}=100$
20 VDU29,640;512;
$25 X=4^{*} M: Y=-4^{*} M$
30 MOVE X,Y
40 FOR $T=-2$ TO 2 STEP . 05
$50 X=M^{*} T^{*} T: Y=M^{*} 2^{*} T$
$6 \emptyset$ DRAW X,Y
70 NEXT T

[8]

10 PMODE4:PCLS:SCREEN1,1
$15 \mathrm{M}=23$
$20 \mathrm{C}=\operatorname{ATN}(1) / 45$
$3 \emptyset$ LINE $-\left(127+\mathrm{M}^{*} 4,95-4^{*} \mathrm{M}\right)$, PRESET
$4 \emptyset$ FOR $T=-2$ TO 2 STEP . $\emptyset 5$
$50 \mathrm{X}=\mathrm{M}^{*} \mathrm{~T} \uparrow 2: Y=2^{*} \mathrm{M}^{*} T$
60 LINE $-(127+X, 95+Y)$, PSET
70 NEXT T
$8 \emptyset$ GOTO $8 \emptyset$

THE HYPERBOLA

The hyperbola equation is:
$\mathrm{X}=\mathrm{A} / \mathrm{COS}$ theta
$\mathrm{Y}=\mathrm{B}^{*} \mathrm{TAN}$ theta
One half of the hyperbola is traced out as theta goes from minus 90° to 90°, and the other half is traced as theta goes from 90° to 270°. It is theoretically possible to use just one loop in the program and take theta from -90° to 270° but there are problems at $-90^{\circ}, 90^{\circ}$ and 270° as at these points division by zero occurs, which the computer cannot deal with. Even at values of theta near these, large values are involved. So the program below uses two loops instead. Again, a magnification factor M is used to scale the drawing to fit the screen:

10 CLS

15 LET m=30
25 LET $x=m / C O S-1:$ LET $y=m * T A N-1$
30 PLOT $127+x, 75+y$
40 FOR $t=-1$ TO 1 STEP . 1
50 LET $x=m / C O S$: LET $y=m$ TAN t
$6 \emptyset$ DRAW $127+x$ - PEEK 23677,
$75+y-$ PEEK 23678
$7 \emptyset$ NEXT t
75 LET $x=m / \operatorname{COS}(\mathrm{PI}-1)$:

LET $\mathrm{y}=\mathrm{m}$ *TAN $(\mathrm{PI}-1)$
80 PLOT $127+x, 75+y$
90 FOR $\mathrm{t}=\mathrm{PI}-1$ TO PI + 1 STEP . 1
100 LET $x=m / C O S t:$ LET $y=m^{*}$ TAN t
110 DRAW $127+x$ - PEEK 23677,
$75+y-$ PEEK 23678
120 NEXT t

10 HIRES $\emptyset, 1:$ COLOUR 1,1
$15 \mathrm{M}=50$
$20 \mathrm{C}=\operatorname{ATN}(1) / 45$
$25 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(-60^{\circ} \mathrm{C}\right): Y=\mathrm{M}^{*} \operatorname{TAN}\left(-60^{\circ} \mathrm{C}\right)$
$30 \mathrm{XX}=267: \mathrm{YY}=8$
40 FOR TH $=-60$ TO 60 STEP 5
$50 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right): Y=\mathrm{M}^{*} \operatorname{TAN}\left(\mathrm{TH}^{*} \mathrm{C}\right)$
60 LINE XX,YY,160 + X,100 + Y, 1
$65 X X=160+X: Y Y=100+Y$
70 NEXT TH
$75 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(120^{\circ} \mathrm{C}\right): \mathrm{Y}=\mathrm{M}^{*} \operatorname{TAN}\left(120^{\circ} \mathrm{C}\right)$
$80 \mathrm{XX}=50 \mathrm{YY}=8$
90 FOR TH $=120$ TO 240 STEP 5
$100 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right): \mathrm{Y}=\mathrm{M}^{*} \operatorname{TAN}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right)$
110 LINE XX,YY,160 + X, 100 + Y, 1

$115 X X=160+X: Y Y=100+Y$
120 NEXT TH
130 GOTO 130

C

10 GRAPHIC 2:COLOR 6,6,5,5
$15 \mathrm{M}=150$
$20 \mathrm{C}=\operatorname{ATN}(1) / 45$
$25 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(-60^{\circ} \mathrm{C}\right): \mathrm{Y}=\mathrm{M}^{*} \operatorname{TAN}\left(-60^{\circ} \mathrm{C}\right)$
30 POINT 1,512+X,512 + Y
40 FOR TH $=-60$ TO 60 STEP 10
$50 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right): \mathrm{Y}=\mathrm{M}^{*} \mathrm{TAN}\left(\mathrm{TH}{ }^{+} \mathrm{C}\right)$
60 DRAW 1 TO $512+X, 512+Y$
70 NEXT TH
$75 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(120^{\circ} \mathrm{C}\right): \mathrm{Y}=\mathrm{M}^{*} \operatorname{TAN}\left(120^{\circ} \mathrm{C}\right)$
80 POINT 1, $\operatorname{INT}(512+X), \operatorname{INT}(512+\mathrm{Y})$
90 FOR TH $=120$ TO 240 STEP 5
$100 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right): \mathrm{Y}=\mathrm{M}^{*} \operatorname{TAN}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right)$
110 DRAW 1 TO $512+X, 512+Y$
120 NEXT TH.
130 GOTO 130

10 MODE 1
$15 \mathrm{M}=100$

20 VDU 29,640;512;
$25 \mathrm{X}=\mathrm{M} / \operatorname{COS}(\operatorname{RAD}(-60))$:
$Y=M^{*} \operatorname{TAN}(\operatorname{RAD}(-60))$
30 MOVE X,Y
40 FOR TH $=-60$ TO 60 STEP 5
$50 X=M / \operatorname{COS}(\operatorname{RAD}(T H)): Y=M^{*} \operatorname{TAN}(R A D(T H))$
60 DRAW X,Y
70 NEXT TH
80 MOVE -200, - 173
90 FOR TH $=120$ TO 240 STEP 5
$100 \mathrm{X}=\mathrm{M} / \operatorname{COS}(\operatorname{RAD}(\mathrm{TH}))$:
$Y=M^{*} \operatorname{TAN}(\operatorname{RAD}(T H))$
110 DRAW X,Y
120 NEXT TH

10 PMODE4:PCLS:SCREEN1,1
$15 \mathrm{M}=50$
$20 \mathrm{C}=\operatorname{ATN}(1) / 45$
30 LINE - (227,8),PRESET
40 FOR TH $=-6 \emptyset$ TO 60 STEP 5
$50 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(\mathrm{TH}^{*} \mathrm{C}\right): \mathrm{Y}=\mathrm{M}^{*} \operatorname{TAN}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right)$
60 LINE - ($127+X, 95+Y)$,PSET
70 NEXT TH
80 LINE - (26,8),PRESET

90 FOR TH $=120$ TO 240 STEP 5
$100 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right): \mathrm{Y}=\mathrm{M}^{*} \operatorname{TAN}\left(\mathrm{TH}{ }^{*} \mathrm{C}\right)$
110 LINE - ($127+\mathrm{X}, 95+\mathrm{Y})$,PSET
120 NEXT TH
130 GOTO 130

ROTATING THE CURVES

The last programs drew the shapes in the simplest possible way with the X axis horizontal and the Y axis vertical. This, though, is not always convenient, and you may need to draw the curves at an angle. Fig. 1 shows what happens to a point on the edge of an ellipse as it is rotated through an angle of AN degrees. The point P moves from position X, Y to its new position XT,YT and its new coordinates are given by:
$\mathrm{XT}=\mathrm{X}^{*} \operatorname{COS}$ AN $-\mathrm{Y}^{*} \operatorname{SIN}$ AN
$\mathrm{YT}=\mathrm{X}^{*} \operatorname{SIN} \operatorname{AN}+\mathrm{Y}^{*} \operatorname{COS}$ AN
Here is the rotation routine for each computer:

```
-
1000 LET xt = x*COS (an*P//180) -
    y*SIN (an*P//180)
1010 LET yt = x*SIN (an*P//180) +
    y*COS (an'PI/180)
1020 RETURN
```

(C) [7]
$1000 \mathrm{XT}=\mathrm{X}^{*} \operatorname{COS}\left(\mathrm{AN}^{*} \mathrm{C}\right)-Y^{*} \operatorname{SIN}\left(\mathrm{AN}^{*} \mathrm{C}\right)$
$1010 \mathrm{YT}=\mathrm{Y}^{*} \operatorname{COS}\left(\mathrm{AN}^{*} \mathrm{C}\right)+\mathrm{X}^{*} \operatorname{SIN}\left(\mathrm{AN}^{*} \mathrm{C}\right)$
1020 RETURN
1000 DEF PROCrotate
$1010 \mathrm{XT}=\mathrm{X}^{+} \operatorname{COS}(\operatorname{RAD}(A N))-$
$Y * \operatorname{SIN}(\operatorname{RAD}(A N))$
$1020 \mathrm{YT}=X \cdot \operatorname{SiN}(\operatorname{RAD}(\operatorname{AN}))+$
$\gamma^{*} \operatorname{COS}(\operatorname{RAD}(A N))$
1030 ENDPROC

You'll have to make a few alterations to the curve drawing programs to make use of the rotate subroutine. The angle of rotation AN has to be specified (Line 17), the start position has to be rotated, then the lines have to be drawn to the new rotated coordinates $X T$ and $Y T$ instead of X and Y. If you like you can alter Line 17 to allow you to INPUT the angle of rotation. On the Dragon and Tandy the INPUT has to come before Line $1 \emptyset$.

Here are the changes to make to the ellipse drawing program. Don't forget to add the rotate routine to each program.

[^0]60 DRAW xt - PEEK 23677 + 127,

yt - PEEK 23678+70

80 STOP

C

$17 \mathrm{AN}=60$
$25 \mathrm{X}=\mathrm{A}:$ GOSUB 1000
$30 X X=160+X T: Y Y=100+Y T$
55 GOSUB $10 \emptyset \emptyset$
$6 \emptyset$ LINE XX,YY,160 + XT,100 + YT, 1
$65 X X=160+X T: Y Y=100+Y T$

$17 \mathrm{AN}=60$

25 X = A:GOSUB $100 \emptyset$
30 POINT 1,512 + XT,512 + YT
55 GOSUB 1000
$6 \emptyset$ DRAW 1 TO $512+\mathrm{XT}, 512+\mathrm{YT}$
I
$17 \mathrm{AN}=6 \emptyset$
28 PROCrotate
30 MOVE XT,YT
55 PROCrotate
60 DRAW XT,YT
80 END

T- \square

$17 \mathrm{AN}=6 \emptyset$
25 X = A: GOSUB 1000
30 LINE - ($127+\mathrm{XT}, 95+$ YT $)$, PRESET
55 GOSUB1000
$6 \emptyset$ LINE - ($127+\mathrm{XT}, 95+\mathrm{YT})$,PSET
You can use the same subroutine (or PROCedure) to rotate the parabola. Add it to the main program and make the changes given below:

17 LET an $=6 \emptyset$
17 LET an $=6 \emptyset$
28 GOSUB $10 \emptyset \emptyset$
30 PLOT $127+x t, 80+y t$
40 FOR $t=-1.75$ TO 1.75 STEP . 05
55 GOSUB 1000
60 DRAW 127 + xt - PEEK 23677,80 +
yt - PEEK 23678
80 STOP

Cz

$17 \mathrm{AN}=60$
$28 \mathrm{X}=\mathrm{M}^{*} 4: Y=-\mathrm{M}^{*} 4:$ GOSUB 1000
$30 \mathrm{XX}=160+\mathrm{XT}: Y \mathrm{YY}=100+\mathrm{YT}$
55 GOSUB 1000
60 LINE XX,YY,160 + XT,100 + YT,1
$65 \mathrm{XX}=160+\mathrm{XT}: Y Y=100+\mathrm{YT}$

30 PLOT $127+x t, 75+y t$
55 GOSUB 1000
60 DRAW $127+\mathrm{xt}$ - PEEK 23677, $75+$ yt - PEEK 23678
76 GOSUB 1000
80 PLOT $127+x t, 75+y t$
105 GOSUB 1000
110 DRAW $127+\mathrm{xt}$ - PEEK 23677,
$75+$ yt - PEEK 23678
130 STOP
28 PROCrotate
30 MOVE XT,YT
55 PROCrotate
60 DRAW XT,YT
80 END

```
7=
17 AN =60
20 C = ATN(1)/45
25 X = M*4:Y = - M*4:GOSUB1000
30 LINE - (127 + XT,95 + YT),PRESET
5 5 \text { GOSUB1000}
60 LINE - (127 + XT,95 + YT),PSET
```

Finally, here are the hyperbola changes:

17 LET an = 60 28 GOSUB 1000

C
17 AN = 60
28 GOSUB 1000
$30 X X=160+X T: Y Y=100+Y T$
55 GOSUB 1000
60 LINE XX,YY,160 + XT,100 + YT, 1
$65 \mathrm{XX}=160+\mathrm{XT}: Y Y=100+\mathrm{YT}$
78 GOSUB 1000
$80 \mathrm{XX}=\operatorname{INT}(160+\mathrm{XT}): \mathrm{YY}=\operatorname{INT}(100+\mathrm{YT})$
105 GOSUB 1000
110 LINE XX,YY, $160+X T, 100+Y T, 1$
$115 \mathrm{XX}=160+\mathrm{XT}: Y Y=100+Y T$

C

17 AN = 60
28 GOSUB 1000
30 POINT 1,512 + XT,512 + YT
55 GOSUB 1000

60 DRAW 1 TO $512+$ XT,512 + YT
78 GOSUB 1000
80 POINT $1, \operatorname{INT}(512+X T)$, INT(512 + YT)
105 GOSUB 1000
110 DRAW 1 TO 512+XT,512 + YT

$17 \mathrm{AN}=60$
28 PROCrotate
30 MOVE XT,YT
55 PROCrotate
60 DRAW XT,YT
$80 X=M / \operatorname{COS}(\operatorname{RAD}(120))$:
$Y=M^{*} \operatorname{TAN}(\operatorname{RAD}(120))$
82 PROCrotate
85 MOVE XT,YT
105 PROCrotate
110 DRAW XT,YT
140 END

$17 \mathrm{AN}=6 \emptyset$ $25 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(-6 \emptyset^{*} \mathrm{C}\right): \mathrm{Y}=\mathrm{M}^{*}$ TAN $\left(-6 \emptyset^{\circ} \mathrm{C}\right): \text { GOSUB1 } 00 \emptyset$ 30 LINE - ($127+\mathrm{XT}, 95+$ YT), PRESET 55 GOSUB1ØØØ 60 LINE - (XT + 127,YT + 95), PSET $75 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(135^{\circ} \mathrm{C}\right): \mathrm{Y}=$

$17 \mathrm{AN}=60$
$25 \mathrm{X}=\mathrm{M} / \mathrm{COS}\left(-60^{\circ} \mathrm{C}\right): \mathrm{Y}=\mathrm{M}^{*}$ TAN ($-60^{\circ} \mathrm{C}$): GOSUB1000
30 LINE - ($127+\mathrm{XT}, 95+$ YT), PRESET
55 GOSUB1000
60 LINE - (XT + 127,YT + 95), PSET
$75 \mathrm{X}=\mathrm{M} / \operatorname{COS}\left(135^{\circ} \mathrm{C}\right): \mathrm{Y}=$

M'TAN(135*C):GOSUB1000

80 DRAW"BM" $+\operatorname{STRS}(\operatorname{INT}(127+X T))+$
"," $+\operatorname{STR} \$(\operatorname{INT}(95+\mathrm{YT}))$
90 FORTH $=135$ TO 240STEP5
105 GOSUB1000
110 LINE - ($127+\mathrm{XT}, 95+$ YT),PSET

PRACTICAL APPLICATIONS

All these curves can be used in some practical way.

The circle has so many uses that it is impossible to list them all. The wheel is an obvious example of a circle, and ball bearings are an obvious use of a sphere. Spheres, or approximations to them, often occur in nature. Examples range from water droplets to peas to planets. But the spheres are very rarely perfect due to effects of gravity, wind or other forces. A planet revolving round a star could move in a circular orbit, although this is more likely to be elliptical.

One useful practical application of the circle is in working out the lowest transport costs for something that can be bought from one of two distribution depots. For example, suppose you wanted to buy a computer which can be supplied by either of two firms A or B which are 300 miles apart. Say firm A sends the computers by special carriers at the rate of 10p a mile while firm B sends the computers by its own van at 5 p per mile. It is very straightforward to mark out the area on a map where it is cheaper to buy from A or B. The idea is to mark all points where the two costs are equal, and join them up by a line. In this case you can afford to have something delivered twice as far from depot B as they only charge half as much. So you should mark all points where the distance from B is twice the distance from A .

One point is on a line between A and B , 100 miles from A and 200 miles from B (since 100×10 p equals 200×5 p). Another point is on the same line 300 miles from A in the opposite direction to $\mathrm{B}(300 \times 10 \mathrm{p}$ equals 600×5 p). If you join up all these points the line traced out is a circle with a radius of 200 miles as shown in fig. 2. If you live inside the circle it is cheaper to buy from A, and if you live outside it is cheaper to buy from B.

The ellipse has practical uses too. If you project the shadow of an ellipse on to a flat surface then it is possible to hold the ellipse at one particular angle where its shadow is a perfect circle. The property is made use of in valves in circular ducts, where an elliptical flap can be used to control air or gas flow. The flap fits the pipe exactly when it reaches the correct angle and so blocks off the pipe.

The parabola, of course, describes the curve traced out by a projectile (see pages 740

- The programs in this article have been designed to make the best use of the TV screen. When you use them in your own programs you'll have to change the magnification factor M so the curves are drawn to the correct size.
- You must also take care with the rotated parabola and hyperbola to make sure that the ends of the curves stay within the screen. (This doesn't apply to the Acorns as these can 'draw' off the screen quite happily.) To prevent this, alter the ends of the FOR ... NEXT loops in Line $4 \emptyset$ of the parabola program and Lines $4 \emptyset$ and $9 \emptyset$ of the hyperbola program. You'll have to find out the exact limits by trial and error.
to 747). Comets can also travel in a parabolic path round the Sun.

A very useful property of the parabola is that rays of light, heat or anything else parallel to the axis are reflected through the focus. This property works in both directions so an electric bulb placed at the focus will produce a parallel beam of light, as used in car headlights. In the other direction parallel rays from the Sun can be concentrated at the focus to produce very high temperatures as in a solar furnace.

In practice, the reflectors used for these purposes are three-dimensional paraboloids. A further use of paraboloids is in radio or radar aerial dishes where the aerial element is placed at the focus and can be used for both transmitting and receiving signals.

An important feature of the hyperbola is that it consists of two parts. And a practical use is in a system of radar navigation for ships. The system relies on two radar stations. One station transmits signals normally, and the other simply retransmits signals received from the first station. Any ship in the vicinity receives both signals and notes the time difference in their arrival. If it moves so as to keep this time difference constant then it will follow a hyperbolic path as shown in fig. 3. If the ship also receives signals from two other radar stations and again notes the time difference this will give a second hyperbola and the intersection of the two gives the position of the ship. There is no confusion over which branch of the hyperbola the ship is on as the signal which arrives first can be detected.

In the next article, you'll see how to program the computer to demonstrate some practical uses for conic sections.

THE MIDAS TOUCH

It＇s time to get rich quick．But do you invest in new technology before exploring？How do you interpret the result？And when do you sell？You＇ll have to be shrewd in Goldmine

In the first part of this game，you saw how to set up the various options available to the player－Research and Development，Explor－ ation and Report，Increasing Mine Depth， and Exchanging Gold for Dollars．Now com－ plete your Goldmine program with the sub－ routines which handle each of these options．

Research and Development follows the player choosing option 1，Exploration and Report is option 2，Increasing Mine Depth is option 3，and Exchanging Gold for Dollars is option 4．Option 5 is Pass，so no complete subroutine is needed．Options 1， 2 and 4 introduce the elements of randomness needed to make the game parallel the real world．

RESEARCH AND DEVELOPMENT

[^1]BY：＂：PRINT＂\＄＂；R1＋1； 1110 PRINT＂PER 200M＂：FORZ＝ 1 TO2300：NEXT 1120 RETURN

1000 PRINT＂回D＂
1010 PRINT＂ $\mathbf{~} \mathbf{~}$ RESEARCH，
DEVELOPMENT＂：PRINT＂理 \mathbf{a}
TO LOWER MINING COSTS＂

HOW MUCH WOULD YOU $\square \square \square$ LIKE
TO INVEST（\＄）＂：INPUTRD
1030 R1 $=\operatorname{INT}\left(\right.$ RD $\left.^{*} .5\right)-1$
$1050 A(M, 4)=A(M, 4)-R 1$
1060 IFA $(M, 4)<\emptyset$ THENA $(M, 4)=\emptyset$
$1080 A(M, 2)=A(M, 2)-R D: A(M, 1)$
$=A(M, 1)-R D$

MINING COSTS WILL BE REDUCED
BY：＂：PRINT＂$\$$＂；R1＋ 1 ＂PER 200M＂
1110 FORZ $=1$ TO2300：NEXT
1120 RETURN

1000 COLOUR129：COLOUR2：CLS
1010 PRINTTAB（8，3）＂RESEARCH AND
DEVELOPMENT＂TAB（ 9,5 ）＂＂LOWERS MINING COSTS）＂
1020 PRINT＇＂HOW MUCH WOULD YOU LIKE
TO INVEST（\＄）＂：INPUTRD
$1050 \mathrm{~A}(\mathrm{M}, 4)=\mathrm{A}(\mathrm{M}, 4)-\operatorname{INT}\left(\mathrm{RD} D^{*} .05\right)$
1060 IF $A(M, 4)<\emptyset$ THEN $A(M, 4)=\emptyset$
$1080 \mathrm{~A}(\mathrm{M}, 2)=\mathrm{A}(\mathrm{M}, 2)-\mathrm{RD}: A(\mathrm{M}, 1)$
$=A(M, 1)-R D$
1100 PRINTTAB $(0,13)$＂YOUR MINING COSTS
WILL BE REDUCED BY $\square \square \square \square \square$＂；
INT（RD＊．05）；＂\square PER 200m＂
1110 FOR $Z=1$ TO 4000：NEXT
1120 RETURN

```
##列
1 0 0 0 ~ C L S
1010 PRINT@3,"research and
    development":PRINT@35,"(TO
    LOWER MINING COSTS)"
1 0 2 0 ~ P R I N T : I N P U T " H O W ~ M U C H ~ W O U L D ~ Y O U ~
```



```
1030 IF RD < Ø THEN 1000
1050 A(M,3) =A(M,3) - INT(RD/20) -1
106\emptyset IF A(M,3)<\emptyset THEN A(M,3)=\emptyset
```

$1080 A(M, 1)=A(M, 1)-R D: A(M, \varnothing)$
$=A(M, \emptyset)-R D$
1100 PRINT＠257，＂YOUR MINING
COSTS WILL BEロロロロロロロ
REDUCED BY \＄＂； $\operatorname{INT}($ RD／20）+1 ；
＂PER 200m＂
1110 FORZ＝ 1 TO2000：NEXT
1120 RETURN
In the Spectrum，Commodore 64 and Acorn programs，Line $1 \emptyset \emptyset$ sets up the screen colours and clears the screen．In the Vic 20 and Dragon／Tandy programs，the screen colour remains the same and the display is simply cleared．Line $1 \emptyset 1 \emptyset$ prints up the heading on the screen，before Line $1 \emptyset 2 \emptyset$ asks the player how much money should be invested－RD（rd in the Spectrum program）is the amount chosen．
Line $1 \emptyset 5 \emptyset$ decreases the mining cost an amount related to the amount of money spent on research and development．Line $1 \emptyset 6 \emptyset$ makes sure the mining costs do not become negative．Line $108 \emptyset$ adjusts the cash assets and total assets to take account of the amount invested in R \＆D．
The amount by which mining costs have been reduced is displayed by Line $11 \emptyset \emptyset$（and Line 1110，in the case of the Commodores）． Line $111 \emptyset$ contains a FOR ．．．NEXT loop to put in a short delay before the subroutine ends．

EXPLORATION AND REPORT

2000 PAPER 4：BORDER 4：INK Ø：CLS
2030 LET $r(m)=\emptyset:$ LET $c(m, 1)=1$ NT
（RND $\left.{ }^{*} 9 \emptyset\right)+1 \emptyset:$ LET $c(m, 2)=\operatorname{INT}$
$((\text { RND＊} 5)+2)^{*} 200:$ LET $c(m, 3)=$ INT
（RND＊200）+1 ：LET $\|=$ INT（RND＊3）-1
2050 LET $c(m, 4)=c(m, 2)+\| \|^{2} 200$
2070 LET c $(m, 5)=\emptyset$ ：LET kk $=$ INT（RND＊
100）：IF kk＜c（m，1）THEN LET $c(m, 5)=1$
2080 PRINT PAPER 6；INK Ø；AT 2，6；＂\square
SCIENTIFIC REPORTD＂：PRINTAT 5，5；
＂Chance of gold $=\square " ; c(m, 1) ; " \%$＂：
PRINT AT 7，5；＂Expected Depth＝\square＂；
c（m，2）；＂m＂：PRINT AT 9，5；＂Expected
amount $=\square " ; c(m, 3) ; " k g "$
2100 LET $z=$ INT（RND＊150000）：LET a（m，2）
$=a(m, 2)-z:$ LET $a(m, 1)=a(m, 1)-z$

-	ADDING THE VITAL	-	REPORT ON THE
	SUBROUTINES	\square	SINKING THE MIN
\square	RESEARCH AND DEVELOP NEW	\square	CONTINUING EXCAVATION
	MINING METHODS	\square	SETTING UP THE GRAPHICS
\square	EXPLORING NEW MINES		GET RIC

2110 PRINT FLASH 1；AT 12，Ø；＂Would you like to mine？（ y or n ）＂
2120 LET I $\$=$ INKEY $\$$ ：IF $\mathbf{~} \$=$＂＂THEN GOTO 2120
2130 IF r $\$=$＂$y$＂THEN LET $a(m, 6)=\emptyset$ ：LET $\mathrm{r}(\mathrm{m})=1$ ：GOTO $30 \emptyset 0$
2500 RETURN

2000 POKE53280，5：POKE53281，5：
PRINT＂ロП＂；
$203 \emptyset R(M)=\emptyset: C(M, 1)=\operatorname{INT}\left(\operatorname{RND}(1){ }^{*} 9 \emptyset\right)+$ $10: C(M, 2)=\operatorname{INT}((\operatorname{RND}(1) * 5)+2) * 20 \emptyset$ $2031 \mathrm{C}(\mathrm{M}, 3)=\operatorname{INT}\left(\mathrm{RND}(1)^{*} 200\right)+1:$
$\mathrm{LL}=\operatorname{INT}\left(\operatorname{RND}(1)^{*} 3\right)-1$
$2050 C(M, 4)=C(M, 2)+L L^{*} 2 \emptyset \emptyset$
$207 \emptyset C(M, 5)=\emptyset: K K=\operatorname{INT}\left(\operatorname{RND}(1)^{*}\right.$
100）：IFKK＜C（M，1）THENC（M，5）＝1
 $\square \square$ SCIENTIFIC REPORT \square＂
 CHANCE OF GOLD $=" ; C(M, 1)$＂\％＂
 EXPECTED DEPTH＝＂；C（M，2）；＂M＂
 EXPECTED AMOUNT＂；C（M，3）＂KG＂ $2100 \mathrm{Z}=\operatorname{INT}\left(\mathrm{RND}(1){ }^{*} 150000\right): A(\mathrm{M}, 2)$ $=A(M, 2)-Z: A(M, 1)=A(M, 1)-Z$
2110 PRINT＂ \mathbf{g} 島鳬壬WOULD YOU LIKE TO MINE（Y OR N）？＂
2120 GETR\＄：IFR\＄＜＞＂Y＂ANDR\＄＜＞ ＂N＂THEN2120
2130 IFR $\$=$＂$Y$＂＇THENA $(M, 6)=\emptyset: R(M)$ ＝1：GOTO3000
2500 RETURN

Cz

$200 \emptyset$ PRINT＂$\square \square$
$2 \emptyset 3 \emptyset R(M)=\emptyset: C(M, 1)=\operatorname{INT}\left(\operatorname{RND}(1)^{*} 9 \emptyset\right)$ $+10: C(M, 2)=\operatorname{INT}\left(\left(\operatorname{RND}(1)^{*} 5\right)+2\right) * 200$ $2031 \mathrm{C}(\mathrm{M}, 3)=\operatorname{INT}\left(\operatorname{RND}(1)^{*} 200\right)+1$ ：
$\mathrm{LL}=\operatorname{INT}\left(\operatorname{RND}(1)^{*} 3\right)-1$
$2050 \mathrm{C}(\mathrm{M}, 4)=\mathrm{C}(\mathrm{M}, 2)+\mathrm{LL}{ }^{*} 200$
$207 \emptyset \mathrm{C}(\mathrm{M}, 5)=\emptyset: \mathrm{KK}=\operatorname{INT}(\operatorname{RND}(1) *$
100）：IFKK＜C（M，1）THENC（M，5）＝1
2080 PRINT＂門国］SCIENTIFIC REPORT＂
2081 PRINT＂＊ \mathbf{y}－ \mathbf{y} CHANCE OF
GOLD $=" ; C(M, 1) " \% "$
2082 PRINT＂ \mathbf{y}（EXPECTED DEPTH $=" ; C(M, 2) ; " M "$
2083 PRINT＂ \mathbf{d} dEXPECTED AMOUNT＂； C（M，3）＂KG＂
$2100 \mathrm{Z}=\operatorname{INT}(\mathrm{RND}(1) * 150000): A(\mathrm{M}, 2)$
$=A(M, 2)-Z: A(M, 1)=A(M, 1)-Z$
2110 PRINT＂島思壬 WOULD YOU LIKE TO

2120 GETR $\$$ ：IFR $\$<>$＂$Y$＂ANDR $\$<>$ ＂ N ＂THEN212Ø
2130 IFR\＄＝＂ Y ＂THENA $(\mathrm{M}, 6)=\emptyset: R(\mathrm{M})$ ＝1：GOTO3000
2500 RETURN

E

2000 COLOUR129:COLOUR3:CLS
$2030 \mathrm{R}(\mathrm{M})=\emptyset: C(\mathrm{M}, 1)=\operatorname{RND}(90)+9:$
$C(M, 2)=R N D(5){ }^{*} 200+400: C(M, 3)$
$=R N D(200): L L=R N D(3)-2$
$2050 \mathrm{C}(\mathrm{M}, 4)=\mathrm{C}(\mathrm{M}, 2)+\mathrm{LL} \cdot 200$
$2070 \mathrm{C}(\mathrm{M}, 5)=\emptyset: \mathrm{KK}=\operatorname{RND}(100): \mathrm{IF}$
$K K<C(M, 1)$ THEN $C(M, 5)=1$ 2080 PRINTTAB $(10,3)$ "SCIENTIFIC REPORT"TAB $(10,10)$ "CHANCE OF GOLD $=\square " ; \mathrm{C}(\mathrm{M}, 1) ;$ "\%" ${ }^{\prime} \mathrm{TAB}(10,12)$ "EXPECTED DEPTH $=\square " ; C(M, 2)$; "m"TAB(10,14)"EXPECTED AMOUNT $=\square " ; C(M, 3) ; " K G "$ $2100 Z=\operatorname{RND}(150000): A(M, 2)=$ $A(M, 2)-Z: A(M, 1)=A(M, 1)-Z$
2110 PRINTTAB $(5,20)$ "WOULD YOU LIKE TO MINE (Y / N)?"
$2120 \mathrm{R} \$=\mathrm{GET} \$$
2130 IF $R \$=$ " Y " THEN $A(M, 6)=\emptyset$:
$R(M)=1:$ GOTO 3000
2500 RETURN

H—畐

2000 CLS
$2030 \mathrm{R}(\mathrm{M})=\emptyset: C(\mathrm{M}, \emptyset)=\operatorname{RND}(9 \emptyset)+9:$
$C(M, 1)=(R N D(5)+1)^{*} 200: C(M, 2)$
$=\operatorname{RND}(200): L L=R N D(3)-2$
$2050 \mathrm{C}(\mathrm{M}, 3)=\mathrm{C}(\mathrm{M}, 1)+\mathrm{LL}{ }^{*} 200$
$2070 \mathrm{C}(\mathrm{M}, 4)=\emptyset: K K=\operatorname{RND}(100)-1$:
IF KK $<C(M, \emptyset)$ THEN $C(M, 4)=1$
2080 PRINT@6,"scientific report":
PRINT@129,"CHANCE OF GOLD =";
C(M,Ø);"\%":PRINT@193,
"EXPECTED DEPTH =";C(M,1);
"m":PRINT@257,"EXPECTED AMOUNT $=" ; C(M, 2) ; " \mathrm{~kg} "$
$2100 \mathrm{Z}=\mathrm{RND}(150000)-1: \mathrm{A}(\mathrm{M}, 1)=$ $A(M, 1)-Z: A(M, \emptyset)=A(M, \emptyset)-Z$
2110 PRINT@353,"WOULD YOU LIKE TO MINE (Y/N) ?"
2120 R $\$=$ INKEY $:$ IF R $\$<>$ " Y " AND R $\$$ < > " N " THEN 2120
2130 IF $R \$=$ " Y " THEN $A(M, 5)=\emptyset$: $R(M)=1: G O T 03000$
2500 RETURN
All machines clear the screen in Line $2 \emptyset \emptyset \emptyset$. The Spectrum, Commodore 64, and Acorn programs also change the screen colours. Line $203 \emptyset$ sets $R(M)$ ($r(m)$, in the case of the Spectrum) to zero to indicate that excavation hasn't yet started. The line also chooses the chance of finding gold, expected depth and the expected amount. LL (or II) is a random number between -1 and 1 which is used in the next line to determine the actual depth of the gold-remember, the value in $C(M, 2)$ is just an expected depth.

Line $2 \emptyset 5 \emptyset$ sets $C(M, 4)$ equal to the value of
$C(M, 2)$ plus or minus 200 metres－200 times LL．Next，Line $2 \emptyset 7 \emptyset$ decides if the mine actually contains any gold．$C(M, 5)$ is set to zero to indicate there＇s no gold．KK is a random number between zero and 99 ．KK is compared with the chance of finding gold－if $K K$ is less，then $C(M, 5)$ is set to one to indicate that there is gold in the mine．

Line $2 \emptyset 8 \emptyset$ presents the player with the Scientific Report on the mine－the Commo－ dores use Lines $2 \emptyset 8 \emptyset$ to $2 \emptyset 83$ ．Although the player is told what chance there is of finding gold and the expected depth，whether it is actually there or not is controlled by the various random factors．So you need to use your judgement about whether the invest－ ment is worthwhile．

Now for the bad news：the report has to be paid for．It＇s impossible to predict how much the report will cost，but it may cost anything between nothing and $\$ 150,000$－the value of Z chosen in Line $21 \emptyset \emptyset$ ．The cost of the exploration and report is subtracted from the cash assets and this deduction appears in the total assets．

Now the player is given the opportunity to start excavations－Line $211 \emptyset$ asks WOULD YOU LIKE TO MINE？If the answer is yes， then the program jumps to the mining routine starting at Line $30 \emptyset$ ．

EXCAVATION

$30 \emptyset \emptyset$ BORDER 6：PAPER 6：INK 1：CLS
3010 IF r（m）$=0$ THEN PRINT FLASH 1；AT
9,2 ；＂You have not explored yet！＂：FOR $z=1$ TO 10：BEEP ．3，－10：NEXT z：RETURN
3020 BORDER 5：INK Ø：PAPER 4：CLS
3022 PRINT PAPER 5；TAB 14；CHR\＄147；CHR\＄ 148；CHR\＄149；TAB 14；CHR\＄150；CHR\＄ 151；CHR\＄152；CHR\＄153；TAB 13；CHR\＄ 154；CHR\＄155；CHR\＄156；CHR\＄157；CHR\＄ 158；TAB 31；CHR\＄ 32
3025 FOR $z=1$ TO 32：PRINT CHR\＄144；： NEXT z
$3 \emptyset 6 \emptyset$ PRINT AT 4， $0 ;$ FOR $z=100$ TO 1400 STEP 100：PRINT TAB 4 －LEN STR\＄z；z： NEXT z
$309 \emptyset$ LET $a(m, 2)=a(m, 2)-a(m, 4):$ LET
$a(m, 1)=a(m, 1)-a(m, 4):$ LET
$a(m, 6)=a(m, 6)+2 \emptyset \emptyset:$ PAUSE $3 \emptyset$
3100 PRINT AT 3,15 ；CHR\＄146：FOR $\mathrm{f}=4$ TO
$(a(m, 6) / 100)+3$ ：PRINT AT f，15；CHR\＄ 145：FOR $w=1$ TO 10：BEEP ． $1,-20$ ： NEXT w：NEXT f
3120 IF $a(m, 6)=c(m, 4)$ AND $c(m, 5)=1$ THEN GOTO $350 \emptyset$
3130 PRINT FLASH 1；PAPER 5；AT 6，18；＂No gold yet！＂：IF a（m，6）＝c（m，2）＋2ØØ THEN PRINT FLASH 1；PAPER 1；INK 6；AT
$18, \emptyset$ ；＂This mine doesn＇t contain any gold．
Try starting another one．＂：FOR $z=1$ TO 10： BEEP ．5，－20：NEXT z：LET $a(m, 6)=\emptyset$ ：
LET $\mathrm{r}(\mathrm{m})=\emptyset$
3140 PAUSE 150
3300 RETURN
3500 PRINT PAPER 6；INK 2；FLASH 1；AT
f，12；＂G O L D＂：FOR z＝－ 20 TO 50：
BEEP ．017，z：NEXT z：PAUSE 75
3550 LET a $(m, 5)=a(m, 5)+1$ ：LET
$a(m, 3)=a(m, 3)+c(m, 3):$ LET
$a(m, 1)=a(m, 1)+(a(m, 3) * e r):$
LET $a(m, 6)=\emptyset:$ LET $r(m)=\emptyset:$ GOTO $33 \emptyset \emptyset$

3000 POKE53280，7：POKE53281，7
$3 \emptyset 10$ IFR（M）＜＞ØTHEN3020

YET！＂：FORZ＝1TO230Ø：NEXT：RETURN
$302 \emptyset$ POKE5328Ø，3：POKE53281，5：
PRINT＂D ${ }^{\square}$＂
3022 PRINTTAB（14）；＂$\square \square \square$＂PRINT

（13）；＂曰ロロロロ＂
3025 FORZ＝ØTO39：PRINT＂$>$＂；：NEXT

FORZ $=100 T 01400$ STEP100：PRINT
TAB（5－LEN（STR\＄（Z）））；Z：NEXT
$309 \emptyset A(M, 2)=A(M, 2)-A(M, 4): A(M, 1)=$
$A(M, 1)-A(M, 4): A(M, 6)=A(M, 6)+2 \emptyset \emptyset$
3095 FORF $=\emptyset T 09 \emptyset:$ NEXT

3102 FORF $=2 T O A(M, 6) / 100:$ PRINT
 －リリリリ回’
3104 POKE54272，33：POKE54273，33：
POKE54277，15：POKE54296，15
3105 POKE54276，129：FORZ＝1TO240：NEXT
3110 NEXT：POKE54296，Ø
3120 IFA $(M, 6)=C(M, 4)$ ANDC $(M, 5)$
$=1$ THEN 3500
3130 PRINT＂固島島島

NO GOLD YET！！！＂
3131 IFA（M， 6$)<>C(M, 2)+20 \emptyset$ THEN 3140
3132 PRINT＂•』ПTHIS MINE DOESN＇T
CONTAIN ANY GOLD．TRY $\square \square$ STARTING
ANOTHER ONE．＂
$3134 A(M, 6)=\emptyset: R(M)=\emptyset$
3140 FORF $=1$ TO2500：NEXT
3300 RETURN
3500 PRINT＂団島島＂：FORZ＝ 1
TOA $(M, 6) / 1 \emptyset \emptyset: P R I N T: N E X T$

リリ壬国 $\square \square 0 \square L \square D \square "$
3510 FORF $=54272$ TO54296：POKEF，Ø：NEXT

3520 POKE54284，15：POKE54283，17：
POKE54296，14
3530 FORF $=64$ T0124
3540 POKE54280，F：FORG $=1 \mathrm{TO} 20$ ：
NEXT：NEXT
3550 FORF $=124$ TO64STEP -1 ：POKE
54280，F：FORG $=1 \mathrm{TO} 2 \emptyset:$ NEXT：NEXT
3560 POKE54296，\emptyset
$3570 A(M, 5)=A(M, 5)+1: A(M, 3)=A(M, 3)$
$+C(M, 3): A(M, 1)=A(M, 1)+A(M, 3){ }^{*} E R$
$3580 A(M, 6)=\emptyset: R(M)=\emptyset: G O T 033 \emptyset \emptyset$

3000 POKE 36879，25
$3010 \operatorname{IFR}(\mathrm{M})<>$ ØTHEN3020
3011 PRINT＂口过岛国国国
蒀 YOU HAVE NOT EXPLORED YET！＂＇：
FORZ $=1$ TO230Ø：NEXT：RETURN
3020 PRINT＂口生国＂
3022 PRINTTAB（14）；＂国 \square
PRINTTAB（14）；＂焉田口回口＂
3025 FORZZ $=1$ T015：FORZ＝ØT02 $0:$
PRINT＂ $\boldsymbol{\text { sl}}$＂$;$ NEXT：PRINT：NEXT 3060 PRINT＂国皿国国＂：FOR $Z=$

100T01400STEP100：PRINT＂${ }^{\mathbf{n} \text {＂Z：NEXT }}$
$3090 A(M, 2)=A(M, 2)-A(M, 4): A(M, 1)$
$=A(M, 1)-A(M, 4): A(M, 6)=A(M, 6)$
$+200$
3095 FORF＝ØTO9＠：NEXT
3100 PRINT＂国島島＂SPC（15） ＂레＂
3102 FORF $=2$ TO A（M， 6$) / 100:$ PRINT
SPC（15）＂ \boldsymbol{m}＂：POKE 36877，128＋F＊3
3104 FORDE $=5$ TO15STEP．3：POKE36878，
DE：NEXT：POKE36877，Ø
3110 NEXT
$312 \emptyset$ IFA（M，6）$=C(M, 4)$ ANDC（ $M, 5)$
$=1$ THEN $350 \emptyset$
3130 PRINT＂国国国国

3131 IFA $(M, 6)<>C(M, 2)+200$ THEN 3140
3132 PRINT＂\square 】THIS MINE
DOESN＇T $\square \square$ CONTAIN ANY GOLD．
TRY $\square \square$ STARTING ANOTHER ONE．＂
$3134 A(M, 6)=\emptyset: R(M)=\emptyset$
3140 FORF $=1$ TO3000：NEXT
3300 RETURN
3500 PRINT＂国岛＂：FORZ＝ 1 TO
A（M，6）／1Ø0：PRINT：NEXT

山リ壬
3508 FORDE $=250 T 0127$ STEP -1 ：POKE
36876，DE：NEXT
3510 FORG $=1$ TO2000：NEXT
$357 \emptyset A(M, 5)=A(M, 5)+1: A(M, 3)=A(M, 3)$
$+C(M, 3): A(M, 1)=A(M, 1)+A(M, 3)^{*} E R$
$3580 \mathrm{~A}(\mathrm{M}, 6)=\emptyset: R(M)=\emptyset: G O T O 33 \emptyset \emptyset$

3000 COLOUR130：COLOURØ：CLS

```
3010 IF R(M) = \emptyset THEN PRINTTAB(6,12)
    "YOU HAVE NOT EXPLORED YET!";FORZ =
    1 TO 10:SOUND1, -15,100,1:SOUND1,\emptyset,
    1,1:NEXT:Z = INKEY(300):RETURN
3020 CLS
3022 VDU 31,16,3,224,225,226,31,16,4,227,
    228,229,230,31,15,5,231,232,233, 234,235
3025 PRINT:FOR Z=1 TO 40:VDU236:NEXT
3060 PRINT:FOR Z = 100 TO 1400 STEP
    100:PRINTTAB(4 - LENSTR$Z);Z:NEXT
3090 A(M,2) =A(M,2) - A(M,4):A(M,1)
    =A(M,1)-A(M,4):A(M,6)=A(M,6)+
    200:Z = INKEY(60)
3100 VDU31,17,6,238:FOR F=7 TO
    (A(M,6)/100) +7:VDU31,17,F-1,237:
    FOR Z=1 TO 13: SOUNDØ, - 15,6,1:
    SOUND0,0,0,1:NEXT:SOUND16,0,\emptyset,1:NEXT
3120 IF A(M,6)=C(M,4) AND C(M,5)
    =1 THEN 3500
3125 COLOUR1
3130 PRINTTAB(20,10)"NO GOLD YET!":IF
    A(M,6)=C(M,2)+200 THEN COLOUR3:
    PRINTTAB(0,29)"THIS MINE DOESN'T
    CONTAIN ANY GOLD. TRY STARTING
    ANOTHER ONE.":A(M,6)=\emptyset:R(M)=\emptyset
3140 FOR Z=1 TO 4000:NEXT
3 3 0 0 ~ R E T U R N
3500 COLOUR1:PRINTTAB(14,F)"G\square0\squareL
    \square":FOR Z=0 TO 250 STEP 10:
    SOUND1, - 15,Z,1:NEXT:Z = INKEY (150)
3550 A(M,5)=A(M,5)+1:A(M,3)=
    A(M,3)+C(M,3):A(M,1)=A(M,1)+(A(M,
    3)*ER):A(M,6)=\emptyset:R(M)=\emptyset:GOTO 3300
```

$\square=\square$
3000 CLS
3000 CLS
3010 IF $R(M)=\emptyset$ THEN PRINT@66,"YOU
HAVE NOT EXPLORED YET !’;:FORZ = 1
T010:SOUND12ø,1:NEXT:RETURN
3015 IF $A(M, 5)>\emptyset$ THEN LINE $(140,40)$
- (157,191),PRESET,BF:GOTO309ø
3020 PCLS:SCREEN1,Ø:COLOR3:LINE
(0,0) - $(255,31)$,PSET,BF
3022 PUT(131,8) - (168,31),H,PSET
3025 FORZ = ØTO 31: PUT(Z*8,32) -
($Z^{*} 8+7,34$),T,PSET:NEXT
3060 FORZ $=100$ TO 1400 STEP 100:
Z\$ = STR\$(Z) + "-":DRAW"C4S8BM"
+ STR $\left(49-8^{*} \operatorname{LEN}(Z \$)\right)+", "+$ STR\$
($32+10$ Z $/ 100$):GOSUB9000:NEXT
3090 SCREEN1, Ø: $A(M, 1)=A(M, 1)-$
$A(M, 3): A(M, \emptyset)=A(M, \emptyset)-A(M, 4):$
$A(M, 5)=A(M, 5)+200$
3100 PUT $(145,32)$ - $(152,39)$,D,PSET:
FORF $=4 \mathrm{TO}(\mathrm{A}(\mathrm{M}, 5) / 100)+3: \mathrm{PUT}(145$,
$\left.\mathrm{F}^{*} 1 \emptyset\right)$ - $\left(152, \mathrm{~F}^{*} 1 \emptyset+9\right)$, B,PSET:
PLAY"T5001BDBDEBDBDE":NEXT
3120 IF $A(M, 5)=C(M, 3)$ AND $C(M, 4)$
$=1$ THEN 3500
$3125 \mathrm{FORZ}=1 \mathrm{TO1000}: \mathrm{NEXT}$
3130 PRINT@40," NO GOLD YET ! ";:

```
    IF A(M,5)=C(M,1)+200 THEN
    PRINT@128," THIS MINE DOESN'T
    CONTAIN ANY\square\square\squareGGOLD.\squareTRY
    STARTING ANOTHER ONE.\square";:PLAY
    "T5003CDEFG":A(M,5)=\emptyset:R(M)=\emptyset
3140 FORZ = 1TO2500:NEXT
3 3 0 0 ~ R E T U R N
3500 F=40 + A(M,5)/10:COLOR2:LINE
    (140,F) - (157,F+5),PSET,BF
3510 FORZ = 1T010:PLAY"T502CA":PUT
    (140,F) - (157,F + 5),H,NOT:NEXT
3520 FORZ = 1TO2000:NEXT
3550 A(M,4)=A(M,4)+1:A(M,2)=A(M,2)
    +C(M,2):A(M,\emptyset) =A(M,\emptyset)+(A(M,2)
    *ER):A(M,5)=\emptyset:R(M)=\emptyset:GOTO3300
```

This routine is called from two places within the program．As you have already seen，you are given the option of mining from within the Exploration and Report subroutine，but it is also used when you opt to increase the mine depth by 200 metres－choice 3 on the list．
As usual，the first line in the routine simply clears the screen，or sets up the screen colours and clears the screen．Line $3 \emptyset 1 \emptyset$ checks that the exploration phase has been completed before excavation can begin．In the case of the Commodores，Lines $3 \emptyset 1 \emptyset$ and $3 \emptyset 11$ check for exploration and display the appropriate mes－ sage．Line $3 \emptyset 2 \emptyset$ prepares the screen for the display again．
Lines 3022 to $3 \emptyset 9 \emptyset$ display the graphics which show the goldmine on screen．Line $31 \emptyset \emptyset$ illustrates the excavation and makes some sound effects．The Commodore programs use Lines $31 \emptyset \emptyset$ to $311 \emptyset$ to show the excavation and make the sound effects．
Line $312 \emptyset$ checks if the excavation has reached the level of the gold，and that there is gold in the mine（it＇s possible to reach the expected level of the gold，only to find that there is none after all in the mine）．If gold has been reached，the program jumps to Line $35 \emptyset \emptyset$ which tells the player that gold has been discovered，and plays a tune－the Commo－ dore programs，again，spread the commands across more than one line．Line $355 \emptyset$ adjusts the value of the player＇s assets，according to the value of the discovered gold．

If no gold has been discovered，the program continues to Line $313 \emptyset$ ．If the excavation has passed the expected gold level by 200 metres，the player is told that the mine has no gold．If the excavation hasn＇t got that far，the player is told NO GOLD YET！

[^2]gold $=\square \$$＂；er；AT 12，2；＂Enter no．of kg to exchange＂：INPUT nte
4070 IF nte $>a(m, 3)$ THEN PRINT FLASH 1；AT
16,0 ；＂You do not have that much gold！＂
4080 LET nte $=$ INT nte
4090 IF nte $>a(m, 3)$ OR nte $<\emptyset$ THEN GOTO 4020
4095 PRINT AT 16，＠；CHR\＄32；TAB 31；CHR\＄ 32 4100 LET $a(m, 3)=a(m, 3)-n t e:$ LET
$a(m, 2)=a(m, 2)+\left(n t e^{*} e r\right)$ ：LET
$a(m, 1)=a(m, 1)+($ nte＊er $)$
4130 PRINT PAPER 5；AT 16，1；nte；＂kg
exchanged for \square \＄＂；nte ${ }^{*}$ er：PAUSE 170：
RETURN
5000 RETURN

4000 POKE53280，7：POKE53281，7：
PRINT＂DT＂
4020 PRINT＂$\square \square \square \square \square \square \mathbf{d} \boldsymbol{d}$
\square EXCHANGE AGENCY \square＂
4030 PRINT＂ $\mathbf{d}_{\mathbf{d}} \mathbf{d}$ dHE CURRENT
EXCHANGE RATE IS：－＂
4040 PRINT：PRINT＂』』1 KG OF
GOLD＝\＄＂ER
4050 PRINT：PRINT：PRINT＂ENTER NO．OF KG TO EXCHANGE＂：INPUT NT
4060 IFNT＞A（M，3）THENPRINT＂ $\mathbf{2}$ AYOU DO
NOT HAVE THAT AMOUNT OF GOLD！！！！！＂
4070 NT $=\operatorname{INT}(N T)$
4090 IFNTE＞A（M，3）ORNTE＜\emptyset THEN $402 \varnothing$
$4100 A(M, 3)=A(M, 3)-N T: A(M, 2)=A(M, 2)$ $+\left(N T^{*} E R\right): A(M, 1)=A(M, 1)+\left(N T^{*} E R\right)$
4130 PRINT＂荎＂NT＂KG EXCHANGED FOR \＄
＂NT＇ER：FORF＝ 1 TO2000：NEXT：RETURN

4000 PRINT＂D个＂
4020 PRINT＂过 $\mathbf{s} \square \square \square$ EXCHANGE
AGENCY $\square \square \square \square "$
4030 PRINT＂ \mathbf{d} dTHE CURRENT
EXCHANGE \square RATE IS：－＂
4040 PRINT：PRINT＂1 KG＝\＄＂ER
4050 PRINT：PRINT＂玉IENTER NO．OF KG
TO $\square \square \square \square E X C H A N G E ": I N P U T N T$
4060 IFNT＞A（M，3）THENPRINT＂ \mathbf{g} YOU DO NOT HAVE THAT AMOUNT OF GOLD $\square!\square!\square!\square \square "$
4070 NT $=\operatorname{INT}(N T)$
4090 IFNTE＞A（M，3）ORNTE＜ØTHEN4Ø2Ø
$4100 A(M, 3)=A(M, 3)-N T: A(M, 2)=A(M, 2)$
$+\left(N T^{*} E R\right): A(M, 1)=A(M, 1)+\left(N T^{*} E R\right)$
4130 PRINT＂荎＂＇NT＂KG EXCHANGED FOR＂：
PRINT＂
NEXT：RETURN
$40 \emptyset 0$ CLS
4020 PRINTTAB $(12,3)$＂EXCHANGE
AGENCY＂TAB $(5,10)$＂THE CURRENT
EXCHANGE RATE IS：－＂TAB $(5,12)$＂ 1 kg

OF GOLD $\square=\square$＂； ；R；：INPUT＂＂ENTER NO．OF kg TO EXCHANGE＂，NTE
4070 NTE $=$ INT（NTE）
4080 IF NTE＞A $(M, 3)$ THEN PRINT＂‘‘YOU DON＇T HAVE THAT MUCH GOLD！＂ 4090 IF NTE $>A(M, 3)$ OR NTE $<\emptyset$ THEN PRINTTAB（28，14）SPC（10）：GOTO 4020 4095 VDU11：PRINTSPC（39）
$4100 A(M, 3)=A(M, 3)-N T E: A(M, 2)=A(M, 2)$ $+\left(N T E^{*} E R\right): A(M, 1)=A(M, 1)+\left(N T E^{*} E R\right)$ 4130 PRINT＂；NTE＂kg EXCHANGED $\square F O R \square \$$＂； NTE＊ER；SPC（20）：Z＝INKEY（340）：RETURN 5000 RETURN

－

4000 CLS
4020 PRINT＠7，＂exchange agency＂：
PRINT＠128，＂THE CURRENT EXCHANGE
RATE IS：－＂：PRINT＠197，＂1 KG OF
GOLD＝＂；ER：PRINT＠288，＂ENTER NO．OF
KG TO EXCHANGE＂；：INPUT NT
$4080 \mathrm{NT}=1 \mathrm{NT}(\mathrm{NT})$
4090 IF NT＞A（M，2）OR NT＜\emptyset THEN 4020
$4100 \mathrm{~A}(\mathrm{M}, 2)=\mathrm{A}(\mathrm{M}, 2)-\mathrm{NT}: A(\mathrm{M}, 1)=\mathrm{A}(\mathrm{M}, 1)$
$+\left(N T^{*} E R\right): A(M, \emptyset)=A(M, \emptyset)+\left(N T^{+} E R\right)$
4130 PRINT＠448，NT；＂KG EXCHANGED FOR＂；
NT＊ER：FORZ＝ 1 TO1000：NEXT：RETURN 5000 RETURN

Line $4 \emptyset \emptyset \emptyset$ sets up the program．
Line $402 \emptyset$ PRINTs the title of the screen， the current exchange rate，and prompts for the number of kilograms to be exchanged－ the Commodores use Lines $4 \emptyset 2 \emptyset$ to $4 \emptyset 5 \emptyset$ ．In all the programs except the Dragon／Tandy， Line $4 \emptyset 7 \emptyset$ checks if there is sufficient gold held．Line $4 \emptyset 8 \emptyset$ ensures the amount of gold exchanged is a whole number．

Line $4 \emptyset 9 \emptyset$ sends the program back to the prompt if the amount exchanged is more than that being held，or less than zero．Line $41 \emptyset \emptyset$ adjusts the assets according to the amount of gold that＇s been exchanged．

The subroutine tells the player how much gold has been exchanged for what amount in dollars，in Line $413 \emptyset$ ．Line $5 \emptyset \emptyset \emptyset$ in the Spec－ trum and Acorn programs is the pass option．

FINISHING TOUCHES

$-$

1 FOR $\mathrm{n}=$ USR＂ a ＂TO USR＂ 0 ＂+7 ： READ a：POKE n，a：NEXT n 7000 PAPER 5：INK Ø：BORDER 5：CLS 7010 PRINT AT 9，12；a\＄（m）：PRINT AT 10，8；＂has gone bust！＂：PRINT FLASH 1；AT 20,1 ；＂\square Press any key to play again \square＂

7030 PAUSE Ø：RUN 5
8000 DATA $255,85,170,0,0,0,0, \emptyset, 62,28$ ， 56，126，28，62，120，28
8010 DATA 255，255，62，126，127，60，124，
126，$, 0, \emptyset, 0,1,1,1,1$
8020 DATA $7,29,49,45,255,255,91,126$,
128，96，48，80，152，140，252，138
8030 DATA 1，1，1，49，49，49，49，255，122， 187，62，95，153，255，153，126
8040 DATA 209，177，224，128，128，128，128， $128,0,0,128,128,64,32,32,16$
8050 DATA $1,3,7,7,4,4,7,7,255,255,255$ ， 255，149，149，159，159
8060 DATA 24，126，153，255，126，153，126，
219，128，192，224，240，248，168，248，255 8070 DATA 16，8，8，4，14，31，31，255

C

7000 POKE53280，3：POKE53281，3： PRINT＂D ${ }^{\circ}$
7010 PRINT＂島国国国思 （1）＂TAB（16）；A§（M）：PRINTTAB
（12）＂ $\mathbf{z a}^{\boldsymbol{f}}$ HAS GONE BUST！！！＂
7015 FORZ＝ 1 T01000： NEXT
7020 PRINTTAB（6）；＂国国7PRESS ANY KEY TO PLAY AGAIN＂
7030 POKE198，Ø：WAIT198，1：RUN5
60000 POKE56334，Ø：POKE1，35

60010 FORF＝ØTO2047：POKE12288＋ F，PEEK（53248＋F）：NEXT
60020 POKE1，39：POKE56334，1
60030 SP＝ 12808
60040 READA：IFA $=-1$ THEN $6007 \emptyset$ 60050 POKESP，A
60060 SP $=$ SP＋1：GOT060040
60070 RETURN
60080 DATA255，85，170，Ø，0，0，0，Ø， 62，28，56，126，28，62，120，28
60090 DATA255，255，62，126，127，60， 124，126， $0, \emptyset, 0, \emptyset, 1,1,1,1$
60100 DATA7，29，49，45，255，255，91，
126，128，96，48，80，152，140，252，138
60110 DATA1，1，1，49，49，49，49，255，
122，187，62，95，153，255，153，126
60120 DATA209，177，224，128，128，128，
$128,128,0,0,128,128,64,32,32,16$
60130 DATA1，3，7，7，4，4，7，7，255，255， 255，255，149，149，159，159
60140 DATA24，126，153，255，126，153， 126，219，128，192，224，240，248，168， 248，255
60150 DATA16，8，8，4，14，31，31，255，－ 1

Cz

7000 PRINT＂D ${ }^{\square}$＂
7010 PRINT＂氜島思思思

7015 FOR $Z=1$ T01000：NEXT
7020 PRINT＂ $\mathbf{~} \mathbf{~} \mathbf{~} \mathbf{~} \mathbf{~} \boldsymbol{T}$ PRESS ANY KEY TO PLAY＂
7030 POKE198，Ø：WAIT198，1：RUN

7000 CLS
7010 PRINTTAB（10，10）A\＄（M）＂\square HAS
GONE BUST＂TAB（ $\varnothing, 29$ ）＂PRESS ANY
KEY TO PLAY AGAIN＂
$7030 \mathrm{Z}=\mathrm{GET}:$ RUN
8000 DATA $\emptyset, \emptyset, \emptyset, \emptyset, 1,1,1,1$
8010 DATA $7,29,49,45,255,255,91,126$,
128，96，48，80，152，140，252，138
8020 DATA $1,1,1,49,49,49,49,255,122$ ， 187，62，95，153，255，153，126
8030 DATA $209,177,224,128,128,128,128$ ， 128，0，Ø，128，128，64，32，32，16
8040 DATA $1,3,7,7,4,4,7,7,255,255,255$ ， 255，149，149，159，159
8050 DATA $24,126,153,255,126,153,126$ ， 219，128，192，224，240，248，168，248，255 8060 DATA $16,8,8,4,14,31,31,255,255,85$ ， 17Ø，Ø，Ø，Ø，Ø，Ø
$807 \emptyset$ DATA $62,28,56,126,28,62,120,28$ ， 255，255，62，126，127，60，124，126

＂－

7000 CLS
7010 PRINT＠76，A\＄（M）：PRINT＠168，＂HAS
GONE BUST ！＂：PRINT＠449，＂PRESS ANY KEY TO PLAY AGAIN＂
7020 IF INKEY\＄＝＂＂THEN 7020 ELSE RUN
9000 FOR K＝1 TO LEN（Z\＄）
$9010 \mathrm{~B} \$=\operatorname{MID} \$(Z \$, K, 1)$
9020 IF $B \$>=$＂$\varnothing$＂AND $\mathrm{B} \$<=$＂ 9 ＂THEN
DRAW NU\＄（VAL（B\＄））：GOTO 9050
9030 IF $\mathrm{B} \$=$＂－＂THEN DRAW＂BF2R4＂
9050 NEXT
9060 RETURN
Lines $7 \emptyset \emptyset \emptyset$ to $7 \emptyset 3 \emptyset$ are an＇another go？＇ routine．

In the Spectrum and Acorn programs， Lines $8 \emptyset \emptyset \emptyset$ to $8 \emptyset 7 \emptyset$ are the DATA for the UDGs．The Commodore 64 program uses Lines $6 \emptyset \emptyset \emptyset \emptyset$ to $6 \emptyset 15 \emptyset$ to POKE the DATA for the UDGs．The Acorn program has the UDG DATA from Lines $8 \emptyset \emptyset \emptyset$ to $807 \emptyset$ ．The Dragon／Tandy program uses Lines $9 \emptyset \emptyset \emptyset$ to 9060 to draw the depth along the left hand side of the mining display screen．
Now you can amass your vast fortune and buy those things you always promised yourself！

COMMODORE HIl-RES GRAPHICS

Now that you've got your
Commodore into @HIRES mode try adding these commands to extend its limited graphics capabilities

In the first part of this article (see pages 748 to 751), you saw how to set up the main routine for a machine code program that would add graphics commands to the Commodore 64's BASIC. At that time, only two of the graphics commands were covered, though-@HIRES and @COLOUR.
In this part, find out how to add the subroutines which handle nine more graphics commands. And in part three, a further eleven will be covered.

PARAMETERS

Of course, these new instructions that you are adding to your Commodore's BASIC don't only work with the programs given in INPUT. You can use them in your own programs as well. But to do that you have to know about the parameters which follow the commands.

In the first part of this article the commands @HIRES and @COLOUR were introduced. @HIRES moves your Commodore into high resolution mode and needs to be followed by two parameters. The first specifies the colour being used to plot with. And the second-which is separated from the first by a comma-specifies the background colour.
@COLOUR is also followed by two parameters. The first figure you give specifies the border colour. And the second-again, separated from the first by a comma-specifies the background colour of the low-resolution screen. The background colour of the highresolution screen is specified by the @HIRES command's parameters of course.
The figures used for the parameters correspond to the colours given in the Commodore 64's Programmers' Reference Guide.

RETURN TO a NRM

The @NRM command returns your Commodore from a multi-coloured or highresolution graphics screen to the normal lowresolution screen.

ORG	50912	NOP	
JSR	$\$ 0073$	LDA	$\# \$ 9 B$
LDA	$\# \$ 93$	STA	$\$ D 011$
NOP		LDA	$\# \$ 15$
NOP		STA	\$DØ18

LDA \# \$C8
STA \$D016

As this command simply undoes what several of the other graphics commands do, it does not require any parameters.

CHARACTER SET

The @CSET command allows you to choose the character set you want to use. When @CSET is followed by \emptyset, it selects the capital letters and graphics character set. And @CSET 1 selects the upper and lower case letters set.
@CSET followed by a 2 recalls the last graphics screen that was shown. Be careful with this command though. If the last graphics screen displayed used the multicoloured mode, you have to follow @CSET 2 with the command @MULTI with the same parameters that were used before.

ORG	49568	LDA	\# \$3B
JSR	\$B79B	STA	\$D011
TXA		LDA	\$D018
CMP	\# \$00	AND	\# \$F0
BEO	\$C1B5	ORA	\# \$08
CMP	\# \$01	STA	\$D018
BEO	\$C1BD	LDX	\# \$00
CMP	\# \$02	LDA	\$02
BEO	\$C1C5	STA	\$0400, X
LDX	\# \$0B	STA	\$04FA, X
JMP	\$0079	STA	\$05F4, X
JMP	\$CA79	STA	\$06EE,X
CLC		INX	
BNE	\$C207	CPX	\# \$FB
ADC	SA9C9, Y	BNE	\$C1D8
BYT	\$17	LDX	\$C00E
STA	\$D018	JMP	\$0079

MULTI-COLOURED MODE

The command @MULTI usually follows the @HIRES command and multiplies @HIRE's one plotting colour into three. So @MULTI takes three parameters separated by commas, each of which specifies one of the colours. These colours are then referred to by the @PLOT command.

The following routine handles the @MULTI command:

 | | PLOTTING A POINT |
| ---: | ---: |
| $\mathbf{-}$ | DRAWING A LINE |
| $\mathbf{~ D R A W I N G ~ R E C T A N G L E S ~}$ | |

ORG	49648	JSR	\$AEFD
JSR	$\$ B 79 B$	JSR	\$B79E
TXA		TXA	
STA	\$CFFØ	STA	\$CFF2
STA	\$DØ21	STA	\$DØ23
JSR	\$AEFD	LDA	\# \$D8
JSR	$\$ B 79 E$	STA	\$DØ16
TXA		LDX	\$CØØE
STA	$\$ C F F 1$	JMP	\$ØØ79
STA	$\$ D \emptyset 22$		

CHANGING COLOUR

The command @LOWCOL allows you to change the colour used for plotting from that originally specified with @HIRES or @MULTI. It takes three parameters which, again, specify the three plotting colours to be used. Although high resolution mode only uses two colours-one for plotting and one background-three numbers must still follow the command, even though the third parameter has no effect. Note there is no space between LOW and COL. The following routine deals with @LOWCOL.

ORG	46696	JSR	\$AEFD
JSR	\$B79B	JSR	\$B79E
TXA		TXA	
STA	\$DØ21	STA	\$DØ23
JSR	\$AEFD	LDA	\# \$80
JSR	\$B79E	STA	\$02
TXA		LDX	\$CØ0
STA	\$DØ22	JMP	\$ØØ79

CHANGING COLOURS BACK

If you want to change your plotting colours back to their original values, you use the $@$ HICOL command. And as it simply undoes the effects of the @LOWCOL commands, it needs no parameters. Note there is no space between HI and COL.

The following routine puts it into effect:

ORG	51712	STA	\$CFF8
JSR	\$0073	STA	\$CFF9
LDA	\# \$FF	LDX	\$CD0E
STA	\$CFF6	JMP	\$0ø79

PLOTTING

Although @PLOT is one of the simplest commands, it is much longer than the other routines here. That's because it is a crucial part of the program, which the other routines call.

All @PLOT does is draw a single dot on the screen. It is followed by three parameters.

The first specifies the horizontal position of the dot. The second specifies its vertical position. And the third fixes how the dot is to be printed.

In both @HIRES and @MULTI mode, a \emptyset in
the third parameter clears the dot by overprinting it with the background colour. A 1 in @HIRES mode draws a dot on the screen in the plotting colour specified by the @ HIRES command. And a 2 reverses the dotif it is in the plotting colour it changes it to the background colour, and if it is in the background colour it changes it to the plotting colour.

In @MULTI mode, if the third figure is a 1 , 2 or 3 , the dot is drawn in the first, second or third colour specified by the @MULTI or @LOW COL command. This time, 4 reverses the colour-it changes a dot in the background colour to one in the third colour, a dot in the first colour to one in the second, a dot in the second colour to one in the first, and one in the third colour back to one in the background colour.

Drawing one dot on the screen may seem like a pretty minor facility. But it is the foundation of many of the other commands. Obviously, when you draw a line on the screen it is made up of a number of dots
placed repeatedly, next to each other. And once you can create lines, you can extend the process to make circles, rectangles and block commands.

Anyway, the following routine supplies the building blocks, the dots themselves:

ORG	49811	STA	\$CFE3
LDA	$\#$ \$0Ø	LDA	\$CFE2
STA	$\$ C F F F$	CMP	\# \$C9
JSR	\$0073	BCC	\$C2CA
JSR	\$AD8A	JMP	\$C48C
JSR	\$B7F7	LDA	\$CFEØ
LDA	$\$ 14$	CMP	\# \$40
STA	$\$ C F E \emptyset ~$	BCC	\$C2D9
LDA	$\$ 15$	LDA	\$CFE1
STA	$\$ C F E 1$	BEQ	\$C2D9
JSR	\$AEFD	JMP	\$C48C
JSR	\$B79E	JMP	\$C36E
STX	\$CFE2	LDA	\$CFE2
JSR	\$AEFD	STA	\$CFE8
JSR	$\$ B 79 E$	STA	\$CFE5
TXA		LDA	\$CFEØ
AND	$\# \$ 07$	STA	\$CFE9

STA	\$CFE6	STA	\$CFEF	BCC	\$C359	CMP	\# \$02	STA	\$CFEF	JSR	\$C4EC
LDA	\$CFE1	LDA	\# \$07	INC	\$FC	BNE	\$C391	LDA	\$CFE3	CLC	
STA	\$CFEA	SEC		CLC		JSR	\$C4AB	CMP	\# \$00	LDA	\$CFE1
STA	\$CFE7	SBC	\$CFEF	ADC	\$FB	JMP	\$C3F9	BNE	\$C3D2	AND	\# \$01
LDA	\$CFE8	STA	\$CFEF	STA	\$FB	JSR	\$C49E	JSR	\$C4B8	BEO	\$C40C
LSR	A	LDA	\# \$00	BCC	\$C361	JMP	\$C3F9	JMP	\$C3F9	LDA	\$CFED
LSR	A	STA	\$FB	INC	\$FC	CLC		CMP	\# \$04	LSR	A
LSR	A	LDA	\# \$20	LDA	\$FB	LDA	\$CFED	BNE	\$C3DC	ADC	\# \$80
STA	\$CFEB	STA	\$FC	CLC		CMP	\# \$AØ	JSR	\$C4C5	LSR	A
LDA	\$CFE9	LDX	\$CFEB	ADC	\$CFEE	BCC	\$C3A2	JMP	\$C3F9	LSR	A
STA	\$CFEC	BEO	\$C34E	STA	\$FB	JMP	\$C48C	CMP	\# \$01	JMP	\$C412
LDA	\$CFEA	INC	\$FC	BCC	\$C36D	LDA	\$CFE1	BNE	\$C3E9	LDA	\$CFEØ
LSR	A	LDA	\$FB	INC	\$FC	CMP	\# \$0Ø	NOP		LSR	A
ROR	\$CFEC	CLC		RTS		BEO	\$C3AC	NOP		LSR	A
LSR	A	ADC	\# \$40	JSR	\$C2DC	JMP	\$C48C	NOP		LSR	A
ROR	\$CFEC	STA	\$FB	LDA	\$D016	LDA	\$CFED	JSR	\$C4D2	STA	\$FB
LSR	A	BCC	\$C34B	AND	\# \$10	ASL	A	JMP	\$C3F9	LDA	\$CFE2
ROR	\$CFEC	INC	\$FC	CMP	\# \$10	STA	\$CFEØ	CMP	\# \$02	LSR	A
STA	\$CFED	DEX		BEO	\$C397	LDA	\$CFE1	BNE	\$C3F6	LSR	A
LDA	\$CFE8	BNE	\$C33E	LDA	\$CFE3	ADC	\# \$00	NOP		LSR	A
AND	\# \$07	LDA	\$CFEC	CMP	\# \$00	STA	\$CFE1	NOP		STA	\$FC
STA	\$CFEE	ASL	A	BNE	\$C387	JSR	\$C2DC	NOP		LDY	\# \$00
LDA	\$CFE9	ASL	A	JSR	\$C491	LDA	\$CFEF	JSR	\$C4DF	STY	\$FD
AND	\# \$07	ASL	A	JMP	\$C3F9	LSR	A	JMP	\$C3F9	LDX	\# \$04

Again, aggregating dots to make up lines seems like a simple enough task. But the line routine is going to be called by other routines-circle, rectangle, block-which make up their shapes from lines.
@LINE takes five parameters. The first two specify the horizontal and vertical positions of the beginning of the line. The second pair specify the horizontal and vertical positions of

LDX	\# \$0B
JMP	$(\$ 0300)$
LDY	\# \$00
LDX	$\$ C F E F$
LDA	$(\$ F B), Y$
AND	\$C120,
STA	$(\$ F B), Y$

LDY \#\$00
LDX \$CFEF
LDA (\$FB),Y
$\begin{array}{ll}\text { ORA } & \text { \$C118,X } \\ \text { STA } & \text { (\$FB), } Y\end{array}$
RTS
LDY
LDX
LD
ST
DX
DA
OR
STA
RTS
LDY
LDX
LDA
AND
STA
\$CFE
AND \$CDAA,X
(\$FB),Y
RTS
LDY \# \$00
LDX \$CFEF
LDA (\$FB), Y
EOR \$CDAE,X
STA (\$FB),Y
LDY \#\$00
LDX SCEF
LDA (\$FB), Y
ORA \$COB2,X
STA (\$FB),Y
LDY \#\$00
LDX \$CFEF
LDA (\$FB), Y
ORA \$COB6,X
STA (\$FB),Y
RTS
LDY \# \$00
LDX \$CFEF
LDA (\$FB), Y
ORA \$CDBA,X
STA (\$FB),Y
RTS

DRAWING A LINE

BCS	\$C79D	LDA	\$C849	JSR	\$AD8A	LDA	\$C94E
LDA	\$C842	STA	\$CFD1	JSR	\$B7F7	STA	\$CFED
CMP	\# \$01	JSR	\$C56D	LDA	\$14	LDA	\$C94F
BNE	\$C766	LDA	\$C848	STA	\$C955	STA	\$CFE1
LDA	\$C841	STA	\$CFED	LDA	\$15	LDA	\$C955
CMP	\# \$3F	STA	\$CFDD	STA	\$C956	STA	\$CFD0
BPL	\$C79D	LDA	\$C849	JSR	\$AEFD	LDA	\$C956
LDA	\$C841	STA	\$CFE1	JSR	\$B79E	STA	\$CFD1
CLC		STA	\$CFD1	STX	\$C957	LDA	\$C958
ADC	\$C844	LDA	\$C84A	JSR	\$AEFD	STA	\$CFD2
STA	\$C848	STA	\$CFD2	JSR	\$B79E	STA	\$CFE2
LDA	\$C842	LDA	\$C843	STX	\$C954	CMP	\$C957
ADC	\# \$00	STA	\$CFE2	LDA	\$C950	BEO	\$C948
ADC	\$C845	JSR	\$C56D	CMP	\# \$C9	CLC	
STA	\$C849	LDA	\$C84A	BCS	\$C8FE	ADC	\# \$01
CMP	\# \$00	STA	\$CFE2	LDA	\$C94F	STA	\$C958
BEQ	\$C78A	STA	\$CFD2	CMP	\# \$01	JSR	\$C56D
CMP	\# \$01	LDA	\$C841	BNE	\$C8E6	JMP	\$C916
BPL	\$C79D	STA	\$CFED	LDA	\$C94E	LDX	\$CD0E
LDA	\$C848	LDA	\$C842	CMP	\# \$3F	JMP	\$0079
CMP	\# \$63	STA	\$CFE1	BPL	\$C8FE	JMP	\$C903
BPL	\$C79D	LDA	\$C848	LDA	\$C956	LDX	\# \$0B
LDA	\$C843	STA	\$CFD 0	CMP	\# \$01	JMP	(\$0300)
CLC		LDA	\$C849	BNE	\$C8F4	LDA	\$C957
ADC	\$C846	STA	\$CFD1	LDA	\$C955	SEC	
BCS	\$C79D	LDA	\$C84A	CMP	\# \$3F	SBC	\$C950
CMP	\# \$C9	STA	\$CFE2	BPL	\$C8FE	BEO	\$C8FE
BCS	\$C79D	STA	\$CFD2	LDA	\$C957	BCC	\$C8FE
STA	\$C84A	JSR	\$C56D	CMP	\# \$ 69	LDA	\$C950
JMP	\$C7A2	LDA	\$C843	BCS	\$C8FE	STA	\$C958
LDX	\# \$0B	STA	\$CFE2	LDX	\# \$00		

THE ROUTINE TABLE

Don't forget to update the table that contains the start addresses of the command routines to include the new ones you have just added. The routine table should now read:
ORG 49345
WOR \&C130
WOR \&C100
WOR \&C1Fø
WOR \&C6ED
WOR \&C22D
WOR \&CADO WOR \&C293 WOR \&C37ø WOR \&C860 WOR \&CEOD WOR \&CEDO WOR \&C1A@

TESTING THE COMMANDS

Try the following BASIC graphics program to test the commands you have added:

[^3]NEXT ZZ,Z
10 @HIRES Ø,3:@COLOUR Ø,Ø:
@MULTI 2,4,5
$20 \mathrm{ZZ}=\emptyset: F O R Z=1$ TO 199:ZZ $=Z Z+$.8:@LINE 160 - ZZ,199,160,199 - Z, RND (1) $3+1$: NEXT Z
30 FOR $Z=1$ TO 3:@BLOCK $160-$ Z*40,199-Z*40,160-Z*15,199Z*15,Z:NEXT Z
40 FOR $Z=5$ TO 15 STEP 5:@BLOCK Z,Z,160-Z,199-Z,4:NEXT Z
50 FOR $Z=1$ TO 75 STEP 2:@REC
$114-Z, 154-Z, Z, Z, Z$ AND 3:NEXT Z
$60 \mathrm{ZZ}=\emptyset: F O R Z=1$ TO 199 STEP
2:ZZ=ZZ + 1.6:@PLOT ZZ, Ø,3:@PLOT
0,Z,3:NEXT Z
70 @LOWCOL 3,6,7:FORZ=1 TO 3
80 @LINE Z'30, $0, \emptyset, Z^{+} 15, Z:$

NEXT Z

90 FOR $Z=1$ TO 4000:NEXT Z
100 FOR $Z=1$ TO 10:@CSET(0):
FOR ZZ = 1 TO 100:NEXT ZZ:
@CSET(2):@MULTI 2,4,5
105 FOR ZZ = 1 TO 100:NEXT ZZ,Z
110 FOR $Z=1$ TO 2000:NEXT Z:
@NRM:@COLOUR 6,12:PRINT "D"
Switch on the routine with SYS 49152.

THE LOW-RES SCREEN

When you @NRM or @CSET \emptyset, you return to the low-res screen. This routine does that:

ORG	51744	STA	\$0500, x
LDX	\# \$00	LDA	\$A228,X
LDA	\$0400, X	STA	\$0600, X
STA	\$A028, X	LDA	\$A328,X
LDA	\$0500, X	STA	\$06B0,
STA	\$ $1128, \mathrm{X}$	INX	
LDA	\$0600, X	BEQ	\$CA6D
STA	\$A228,X	JMP	\$CA4F
LDA.	\$0700, X	LDA	\$01
STA	\$A328,X	ORA	\# \$01
INX		STA	\$01
BEO	\$CA40	LDX	\$CDOE
JMP	\$CA22	JMP	\$0079
LDA	\$02	LDA	\$D011
LDY	\# \$00	AND	\# \$20
JMP	\$C174	CMP	\# \$20
LDA	\$01	BNE	\$CA85
AND	\# \$FE	JMP	\$C979
STA	\$01	LDX	\$CDOE
LDX	\# \$00	LDA	\# \$15
LDA	\$A@28,X	STA	\$Dø18
STA	\$0400,	JMP	\$0079
LDA	\$ $4128, \mathrm{X}$		

You must also alter the @HIRES routine in part one by doing the following POKEs-POKE 49520,76: POKE 49521,23: POKE 49522,202. ReSAVE @HIRES after you have made these changes.

A PLAY ON WORDS

In the second part of this article, the main core of the text editor, we describe how to use the editing functions on each machine. Although the general procedures for using the program follow much the same pattern, the specific controls and features do differ.

Once you have keyed in the part of the program contained in this article, you will be able to make full use of the editing facilities contained within the program. But remember, you won't be able to print out any text until you've keyed in the final part of the program which will be published in the third part of this article.

Since the art of letter writing has become a thing of the past, you will find the editing facilities contained in the text editor program helpful on many levels. At the simplest level, spelling corrections can be made just by moving your electronic nib-the cursor-to the offending word, and deleting or inserting characters as necessary.
If you don't have problems with spelling, but find actually composing the text a problem, particularly if it's an important letter such as an application for a job, or a letter to your bank manager explaining why you've just inadvertently overdrawn your account, then you'll find this program ideal. When typing a letter you can end up wasting many sheets of paper as you struggle to find the right words-the opening words are usually the most difficult to find. Composing straight onto your computer keyboard will keep the waste paper bin empty and your temper intact. Instead of agonizing over finding the perfect opener, you can simply do your letter in draft form. You can then analyze what you've written by scrolling the text-either backwards or forward-up and down the screen. Once you've decided what needs to be amended or omitted, you can delete or insert words, phrases or even sentences until you finally arrive at the perfect composition.

An additional benefit of composing onto the screen is that you can store the letter and use it again, or simply have a record of what you've said.
The facilities contained within this program are similar to, although considerably less sophisticated than, the facilities available

on the modern phototypesetting machines which are used to typeset publications such as INPUT. And you can very easily see the advantages if you have read about, or are familiar with, the methods used to compose type before the phototypesetter was invented.

The Spectrum program is set up for use with a tape unit, so ensure you make the necessary amendments if you want to use a Microdrive.

The editing features are almost identical to those used for normal BASIC editing, and no
special 'editor' mode is needed. All entries and amendments to copy have to be made in the bottom section of the screen displaying the work area-rather than the top section which is for viewing the text that is in the machine's memory.

When editing text that is in the work area, further characters can be inserted by using the CAPS SHIFT and 5 to move the cursor to the left and CAPS SHIFT and 8 to move it to the right. Once the cursor is in the required position, key in any additions. To delete, position the cursor to the right of the redund-

-	MAKING ADDITIONS
-	CORRECTING ERRORS
	MAKING AMENDMENTS
	MAKING DELETIONS

\section*{| - | MOVING PARAGRAPHS |
| ---: | ---: |
| - | CONVENIENCE OF INPUT |
| $\mathbf{~ T I M E ~ F O R ~ A N A L Y S I S ~}$ | |
| | USING THE PROGRAM |}

ant character and press CAPS SHIFT and \emptyset.
To put text from the work area into memory, use ENTER. Lines longer than 64 characters (the maximum two lines that can be held in the work area) are transferred automatically. But these remain linked to the following line for printout or display unless special formatting commands are used.

The cursor up and cursor down keys are used to locate specific lines of text contained in the memory-a bright marker is positioned under your 'target' line in the text viewing area towards the top of the screen. The line
can be copied to the work area using the normal EDIT function-by pressing SHIFT and 1 , then edited as described above. To delete a line of text already in the memory, press CAPS SHIFT and 9 to exit from editor mode, and press CAPS SHIFT and SYMBOL SHIFT simultaneously.

To scan text contained in the memory use cursor down and cursor up keys, CAPS SHIFT and 6 and CAPS SHIFT and 7. These keys will move the text up or down one line at a time.

1000 REM print screen
1005 PLOT $\emptyset, 13:$ DRAW 255,Ø: PLOT $\emptyset, 14:$ DRAW 255, \varnothing
$101 \emptyset$ PRINT AT $\emptyset, \emptyset ;:$ FOR $n=p-1 \emptyset$ TO $p+8$
1020 IF $n<1$ OR $n>20 \emptyset$ THEN PRINT $s \$$: GOTO 1050
1025 IF $n=p$ THEN PRINT
1030 PRINT $\mathrm{t} \$(\mathrm{n})$
1040 POKE $22528+320,120$
1050 NEXT n
1060 RETURN
2000 REM input
2010 LET $i \$=" ":$ LET $j \$=" "$
2015 PRINT \# 1;AT Ø, $\emptyset ; \$;$ FLASH 1; BRIGHT 1;" $\square " ;$ FLASH \emptyset; BRIGHT $\emptyset ; \$ \$; " \square "$
$2 \emptyset 2 \emptyset$ PAUSE $\emptyset:$ LET $a \$=$ INKEY\$: IF $a \$=" "$ THEN GOTO 2020
2025 BEEP . $01,2 \emptyset$
2030 IF a\$ < CHR\$ 32 THEN GOSUB 2500
2040 IF a\$ > CHR\$ 31 AND a\$ < CHR\$ 123
THEN LET $\mathrm{i} \$=\mathrm{i} \$+\mathrm{a} \$$
2042 IF $\mathrm{a} \$=$ CHR\$ 13 AND $b=$ ext -6 THEN
PRINT \#1;AT Ø,Ø;s\$;s\$; FLASH 1;"TEXT
FILE FULL": BEEP 2,10: RETURN
2045 IF a\$ = CHR $\$ 13$ OR LEN i\$ + LEN
j\$ = 64 THEN PRINT \# 1;AT Ø, $\emptyset ; \mathbf{\$} ; \mathrm{s} \$; \mathbf{s} \$:$
LET i\$ = i\$ + j\$: GOTO 2100
2050 IF a $\$=$ CHR $\$ 14$ THEN RETURN
2052 IF a\$ = CHR\$ 6 THEN INPUT "Enter target string", LINE $\mathrm{z} \$$: IF $\mathrm{z} \$=$ "" THEN GOTO 2052
2053 IF a\$ $=$ CHR $\$ 6$ THEN LET $p=4$: GOSUB $80 \emptyset \emptyset$
2054 IF a\$ $=$ CHR $\$ 4$ THEN GOSUB $800 \emptyset$ 2055 IF a\$ = CHR $\$ 5$ THEN GOSUB 8500 2060 GOTO 2015
2100 IF LEN i\$ > 32 THEN GOTO 2150
2105 FOR $n=b+1$ TO p STEP -1

2110 LET $\mathrm{t} \$(\mathrm{n}+1)=\mathrm{t}(\mathrm{n})$
2120 NEXT n
2130 LET $\mathrm{t} \$(\mathrm{n}+1)=\mathrm{i} \$:$ LET $\mathrm{p}=\mathrm{p}+1$: LET
$b=b+1$
2140 GOSUB 1000: GOSUB 2500: GOTO 2000
2150 FOR $n=b+1$ TO p STEP -1
2160 LET $\mathrm{t} \$(\mathrm{n}+2)=\mathrm{t} \$(\mathrm{n}):$ LET
$t \$(n+3)=t \$(n+1)$
2170 NEXT n
2180 LET $\mathrm{t} \$(\mathrm{n}+1)=\mathrm{i} \$($ TO 32): LET
$\mathrm{t} \$(\mathrm{n}+2)=\mathrm{i} \$(33$ TO $):$ LET $\mathrm{p}=\mathrm{p}+2$: LET
$b=b+2$
2190 GOTO 2140
2200 LET $\mathrm{p}=\mathrm{p}-1$: FOR $\mathrm{n}=\mathrm{p}$ TO $\mathrm{b}+1$
2210 LET $\mathrm{t} \$(\mathrm{n})=\mathrm{t} \$(\mathrm{n}+1)$
2220 NEXT n
2225 LET b $=\mathrm{b}-1$
2230 GOSUB 1000
2240 RETURN
2500 REM control codes
2520 IF $\mathrm{a} \$=\mathrm{CHR} \$ 10$ AND $\mathrm{p}<\mathrm{b}-2$ THEN
LET $p=p+1$: GOSUB $100 \emptyset$
2530 IF a $\$=$ CHR $\$ 11$ AND $p>t+3$ THEN
LET $p=p-1$: GOSUB 1000
2540 IF A\$ = CHR $\$ 12$ AND LEN i $\$>0$ THEN
LET i\$ = i\$ (TO LEN i\$ - 1)
2550 IF a\$ = CHR\$ 8 AND LEN i\$ > 0 THEN
LET $\mathrm{j} \$=\mathrm{i} \$($ LEN $\mathrm{i} \$)+\mathrm{j} \$:$ LET $\mathrm{i} \$=\mathrm{i} \$(T 0$
LEN i\$ - 1)
2560 IF a $\$=$ CHR $\$ 9$ AND LEN $j \$>0$ THEN
LET i\$ = i\$ + j\$(1): LET $j \$=j \$(2$ TO)
2570 IF a\$ < > CHR\$ 7 THEN GOTO 2580
2572 LET $j \$=t \$(p-1):$ LET $i \$=$ '"": PRINT \# 1;AT Ø, $\emptyset ; \mathrm{s} \$; \mathrm{s} \$$
2575 IF $\$$ (LEN $j \$)=$ CHR $\$ 32$ THEN LET $j \$=j \$($ TO LEN $j \$-1)$: IF LEN $j \$>\emptyset$ THEN GOTO 2575
2580 IF a $\$=$ CHR $\$ 15$ AND $p>4$ THEN
GOSUB 2200
2690 RETURN
3000 REM colours
3010 PRINT AT 10,4;"Select paper colour $(\emptyset-7) "$
$3 \emptyset 2 \emptyset$ PAUSE $\emptyset:$ LET a\$ = INKEY\$: IF a\$ < " ""
OR a\$> " 7 " THEN GOTO 3020
$303 \emptyset$ PAPER VAL a\$: BORDER VAL a\$: CLS : RETURN

The procedures for using this program follow the general outlines given previously. The
standard Commodore 64 screen editing facil－ ities are very effective and these are retained in this text editor．But when you enter edit mode，editing controls pass largely to the function keys，some of which are used by the extra features associated with the printer routine．

Text is created or amended in the work area near the bottom of the screen．The upper part of the display is for viewing text held in memory．Deletions and insertions are made in the normal way by using the［INT SHIFT or DEL keys once you have positioned the cursor using the CRSR left and right keys．Existing characters are overwritten unless you use the insert mode which can be selected by pressing

Text is placed in memory and displayed in the viewing area by pressing RETURN．It may be recalled at any time by entering＇editor＇ mode which you do by pressing［1］．A marker （ ）indicates the text access point．The line immediately above the marker can be copied to the work area by pressing f（f），and there it may be edited in the normal way．

To delete a line of text in memory，enter editor mode and position the marker immedi－ ately above the line you wish to remove，then press｜NST／DEL｜．A line space may be entered by simultaneously pressing INST and SHIIFT， or by pressing RETURN in entry mode without entering text in the work area．

The contents of the memory can be viewed in edit mode by pressing f1，followed by CRSR up or down with or without SHIFT to scroll up and down from the marker position to which the editor mode always returns．

You can jump five lines at a time by pressing the up arrow key or down by pressing the left arrow key．

To exit editor or entry modes（in sequence） press［7］．Text in memory will remain unaffected．

1700 IFCP $=1$ THEN1510
1710 CP $=C P-1:$ FORF $=$ CPTOTL：TX\＄（F）
$=T X \$(F+1):$ NEXT：TL $=T L-1$
1720 GOSUB2090
1730 GOT01510
1800 IFTL＞499THEN1510
1810 FORF $=$ TL +1 TOCP +1 STEP $-1:$ TX\＄
（F）

$$
\begin{aligned}
& =T X \$(F-1): N E X T: T L=T L+1: T X \$(C P) \\
& =" \geqslant
\end{aligned}
$$

1820 GOSUB2090：GOT01510
$2000 \mathrm{X}=0$ ： IF TL＞ 499 THEN 2060
2001 IFLEN $(\mathrm{A} \$)<41$ THENTT $\$(\mathrm{X})=$ LEFT\＄
（A\＄，LEN（A\＄）－1）：A\＄＝＂＂：GOTO2030
2010 FORI $=41$ TO1STEP $-1: I F M I D \$(A \$, 1$ ，
1）＜＞＂口＂THENNEXT：I＝ 41
$2 \emptyset 20 T T(X)=$ LEFT $\$(A \$, 4 \varnothing): A \$=$ MID $\$$
（A\＄，41）
$2030 \mathrm{X}=\mathrm{X}+1: 1 \mathrm{IFA} \$<>$＂＂＇ANDA\＄＜＞ ＂口＂THEN2001
2040 FOR I $=$ TL + XTOCP + XSTEP $-1:$ TX\＄（I）
$=T X \$(1-X)$ ：NEXTI
2050 FORI $=\emptyset T O X-1: T X \$(C P+1)=\pi \$$
（I）：NEXT
$2060 \mathrm{~A} \$=$＂$\square ": P=\emptyset:$ PRINTLEFT\＄
（GC\＄，23）A\＄；
$2080 \mathrm{TL}=\mathrm{TL}+\mathrm{X}: \mathrm{CP}=\mathrm{CP}+\mathrm{X}$
2090 IF CP <15 THEN S1＝$\emptyset: G O T O 2100$
2095 S $1=\mathrm{CP}-15$
2100 PRINT＂${ }^{2}$＂；：FORK＝S1TOS1＋15：
PRINTTX\＄（K）；：IFLEN（TX\＄（K））＜40
THENPRINTCHR\＄（160）
2110 IFK＝CP－1THENPRINT＂ $\boldsymbol{\lambda} \mathbf{A} \square$

－ $\boldsymbol{\pi}^{\prime}$

2120 NEXT

2130 PRINT＂匈MEM＂；BL\＄；＂FREE＝IU＂； $40^{*}(501-\mathrm{TL}) ;$
2140 PRINT＂O／W MODE＝【＂＂OW＂
｜｜EDIT MODE＝＂；EM：PRINT＂ $\boldsymbol{\text { In }}$＂
SW\＄＂ $\boldsymbol{\pi}$＂；：RETURN
2500 IFCP <5 THENPM $=$ CP
2510 GETB $\$: I F T B \$="$＂＇THEN2510
2512 IFPM $=1$ ANDTB $\$=$＂ D＂THEN2510
2520 IFPM >1 ANDTB $\$=$＂ \mathbf{O}＂THENPM $=$
PM－ $1:$ CP＝PM：GOTO255 \varnothing
2525 IFPM＜TLANDTB $=$＂ 玉＂${ }^{2}$ THENPM＝
PM $+1: C P=P M: G O T 02550$
2530 IFPM >5 ANDTB $\$=" \uparrow$＂THENPM $=$
PM－$:$ ：CP＝PM：GOTO2550
2535 IFPM $<T L-5$ ANDTB $\$=$＂$\leftarrow$＂THEN
$\mathrm{PM}=\mathrm{PM}+5: \mathrm{CP}=\mathrm{PM}: \mathrm{GOTO} 2550$
2540 GOTO2560
2550 GOSUB2090：GOTO2510
2560 IFTB $\$=$ CHR $\$(136)$ THENEM $=0$ ：
GOSUB2090：GOT01505
2570 IFTB $\$<$ CHR\＄（148）THEN2580
2571 IFCP＜ 1 THEN2510
2572 FORK $=$ TL +1 TO PM＋ 1 STEP－ 1 ：
TX\＄（K）$=T X \$(K-1): N E X T:$
$T L=T L+1: T X \$(P M)=" "$
2573 GOSUB 2090：GOTO2510
2580 IFTB $\$$＞CHR\＄（20）THEN2590
2581 IFPM＝TLTHEN2510
2582 FORK＝PMTOTL：TX\＄（K）＝TX\＄（K＋1）：
NEXT：TL＝TL -1
2583 TX\＄（TL＋1）＝＂＂：GOSUB2090：
GOTO 2590
$2584 \mathrm{CP}=\mathrm{CP}-1$
2590 IFTB $\$=$＂$@ " T H E N S F=S F+1$ ：
IFSF＝1THENSS＝CP：GOTO2510
$2600 \mathrm{IFSF}=2$ THENSE $=\mathrm{CP}: \mathrm{SF}=\emptyset:$
GOSUB5130：GOTO2510
2610 IFTB $\$=$＂$S$＂THENGOSUB507 \varnothing
2620 GOTO2510
3000 IFTL＜2THEN3050

＂\triangle PRINTER ROUTINE π＂：CLOSE4
 OR FROM EAF ILE ？＂
3030 GETR\＄：IFR\＄＜＞＂M＂ANDR\＄＜＞＂F＂ THEN303Ø
3040 IFR $\$=$＂$M$＂THEN3060
3050 GOSUB4500
3060 IFTL $=1$ THENPRINTTAB（11）

MEMORY π＂：GOTO3570
$3070 \mathrm{KF}=\emptyset:$ PRINT＂ $\boldsymbol{\|}$ 或FILL VARIABLE BLOCKS（Y／N）？＂
3080 GETR \＄：IFR $\$<>$＂$Y$＂ANDR $\$<>$＂N＂ THEN3080
3090 IFR $\$=$＂$N$＂THEN3150

OR 玉्व
3110 GETR \＄：IFR $\$<>$＂K＂ANDR\＄＜＞＂F＂ THEN3110
$3120 \mathrm{KF}=2: I$ IFR $\$=$＂ K ＂THENKF $=1$ ： GOTO3150
3130 INPUT＂ $\mathbf{玉}$ INPUT FILENAME＂；VB\＄： VB $\$=\operatorname{LEFT} \$(\mathrm{VB} \$, 16)$
3140 IFLEFT $(V B \$, 1)$＜＂A＂ORLEFT\＄ （VB\＄，1）＞＂Z＂THEN3130
3150 PRINT＂DDO YOU WISH TO CHANGE THE PRINTER（Y／N）？＂
3160 GETR\＄：IFR\＄＜＞＂γ＂ANDRS＜＞＂N＂ THEN3160
3170 IFR $\$=$＂$Y$＂THENGOSUB5500
3180 PRINT＂D＂
$3190 \mathrm{VB}=\emptyset: \mathrm{PP}=\emptyset: A S=\emptyset: L C=1: P R I N T$
＂DO YOU WISH FOR A SAMPLE OUTPUT TO THED $\square S C R E E N " ;$
3191 PRINT＂$\square(\mathrm{Y} / \mathrm{N}) .<$ RETURN＞TO
RETURN TO MAIN MENU＂：BL＝\quad Ø
3200 GETR\＄：IFR\＄＜＞＂Y＂ANDR\＄＜＞＂N＂
ANDR\＄＜＞CHR\＄（13）THEN3200
3210 IFR $\$=$ CHR $\$(13)$ THENRETURN
3211 IFR $\$=$＂N＂THENP $=$ DN：OPEN4，P，7，
＂玉＂：GOTO3220
3215 OPEN4，3：PRINTCHR\＄（14）
3220 IFKF＜＞2THEN3240
3230 IFDL $=1$ ANDKF $=2$ THEN 3232
3231 IFKF＝ 2 THEN 3236
3232 OPEN2，8，2，VB\＄＋＂，S，R＂：
INPUT \＃2，DV，DV：GOTO3240
3236 OPEN1，1， $0:$ INPUT \＃1，DV，DV
3240 GP\＄$=$＂＂$: \mid$ IFR $\$=$＂N＂THENFORF $=1$ TOGP：GP\＄＝GP\＄＋＂\square＂：NEXT
3250 FORK＝ 1 TOTL -1
3252 IFLEFT\＄（TX\＄（K），1）＝＂\＃＂AND $\operatorname{LEN}(\mathrm{TX}(\mathrm{K}))-1>$ AS THEN AS $=$ LEN（TX\＄（K））
3260 NEXT：IFAS＞TWTHENPRINT＂ERROR： ADDRESS TOO LONG＂•GOTO357ø
$3270 \mathrm{~K}=1$ ：PRINT \＃4，LF\＄；GP\＄；：AS\＄＝＂＂： IFAS $>$ ØTHENFORF $=1$ TOGP + TW－AS：
AS\＄＝AS $\$+$＂$\square$＂：NEXT
$3280 \Pi \$=T X \(K)

3560 IFP = ØTHEN319Ø
3561 RETURN
3570 FORZ = 1 TO3000:NEXT:FORZ $=1$ T08:CLOSEZ:NEXTZ
3580 RETURN
3590 IFLC > THTHENPRINT \# 4,LF\$;LF\$; GP\$;:LC=1
3600 RETURN

?

To enter Editor mode simply press E. If you are dealing with text already stored in the memory, Press T, B or N, depending on the area of text which requires editing. If text is to be keyed in and edited at the same time, press any of these keys.

To delete characters in the work area use the right or left cursor keys to position cursor to the right of the relevant character then press (DELETE.
To amend text already stored in memory, use the cursor up or down keys to move the > marker directly below the line containing the error, and press the COPY key. This will move an identical line of text into the work area. Insert or delete as described above. Return the amended line to the memory by pressing RETURN, making sure that the $>$ marker is positioned directly below the point the amended line has to be inserted. To delete the original line, move the marker directly beneath it and press control D .

To review text in the memory, enter editor mode and press T, B or N depending on where you want to start. If you then press either the up or down cursor keys, text will move up or down ten lines at a time.
To return to the main menu press ESCAPE.
To store new text in the memory, press RETURN. Text will automatically go into memory if you key more than $12 \emptyset$ characters.
Additional characters can be inserted at any point in the work area by moving the cursor to the right of the chosen point. Amendments can then be keyed in and existing text will not be overwritten.
For disk drive, omit Lines $86 \emptyset$ and $1 \emptyset 2 \emptyset$.

[^4]750 IF CP > 1 AND TB = 135 THEN VDU
$23,1, \emptyset ; \emptyset ; \emptyset ; \emptyset ;: \operatorname{PRINTTAB}(\emptyset, 15)$
SPC(120):VDU 23,1,1; $;$; $\varnothing ;$; $;:$
$A \$=T X \$(C P-1):$ RETURN
760 IF TB $=19$ THEN GOSUB 1200
770 IF TB < > 0 THEN 790
$780 \mathrm{SF}=\mathrm{SF}+1: \mathrm{IF}$ SF $=1$ THEN SS $=C P$
ELSE SE $=C P: S F=\emptyset: G O S U B 126 \emptyset$
790 GOSUB 600:GOTO 670
800 CLS:PRINTTAB(15,2)RV\$"SAVE
A FILE"NM\$:IF TL = 1 THEN PRINTTAB($\varnothing, 10$)"NOTHING TO
SAVE":FOR Z=1T03000:NEXT:RETURN
810 INPUT""‘FILENAME PLEASE",F\$
820 IF LEN(F\$) > 8 THEN PRINT"THAT NAME
IS TOO LONG":GOTO 810
830 CLS:PRINTTAB(0,4) "SAVING"; F\$
840 'TAPE
850 'OPT1,1
860 'OPT 2,1
870 IF SFF $=\emptyset$ THEN 'DISK
$880 \mathrm{H}=0$ PENOUT(F\$)
890 PRINT \# H,CP,TL
900 FOR K=1 TO TL-1:PRINT \# H, TX\$(K):NEXT
910 CLOSE \# H:RETURN
920 CLS:PRINTTAB(15,2)RV\$"LOAD A
FILE"NM\$:IF TL=1 THEN 980
930 PRINT"ARE YOU SURE (Y/N) ?"
$940 \mathrm{R} \$=\mathrm{GET} \$: I F \mathrm{R} \$=$ " N " THEN RETURN
950 IF $\mathrm{R} \$<>$ " Y " THEN 940
960 FOR K $=1$ TO TL:TX\$(K) = "" :
NEXT:TL = 1:CP = 1
970 TX\$ $(\emptyset)=$ CHR $\$(\emptyset)+$ RV $\$+$ "START
OF TEXT" + NM\$:TX\$(TL) $=$ CHR\$
(\emptyset) + RV\$ + "END OF TEXT" + NM\$

980 INPUT""‘FILENAME PLEASE",F\$
990 IF LENF\$ > 8 THEN PRINT"THAT NAME
IS TOO LONG":GOTO 980
1000 'TAPE
1010 *OPT 1,1
1020 *OPT 2,1
1030 IF LF $=\emptyset$ THEN 'DISK
$1040 \mathrm{H}=0 \operatorname{PENIN}(\mathrm{~F} \$)$
1050 INPUT \# H,CP,TL
1060 FOR K=1 TO TL-1:INPUT \# H,TX\$(K):NEXT
1070 CLOSE \# H
1080 TX\$(TL) $=$ CHR\$($\emptyset)+$ RV $\$+$ "END OF TEXT" + NM\$
1090 RETURN
1100 CLS:PRINTTAB(14,2)RV\$"I/Ø SETUP"NM\$
1110 PRINT"'"‘'LOAD FROM (T)APE OR (D)ISK";
$1120 \mathrm{~B} \$=\mathrm{GET} \$: I F \mathrm{~B} \$<>$ "T" AND B $\$$ < > " D " THEN 1120
1130 PRINTB\$
$114 \emptyset$ IF $\mathrm{B} \$=$ "T" THEN LF=1 ELSE LF= \emptyset
1150 PRINT""'SAVE TO (T)APE OR (D)ISK";
$1160 \mathrm{~B} \$=\mathrm{GET} \$: I F \mathrm{~B} \$<>$ " T " AND B $\$$ < > "D" THEN 1160
1170 PRINTB\$
1180 IF B $\$=$ "T" THEN SFF $=1$ ELSE SFF= \emptyset
1190 RETURN
1360 IF ERR < > 17 THEN PRINT: REPORT:PRINT" AT LINE "; ERL:PRINT:END
1370 IF ERL $=210$ THEN PRINT "ESCAPE":END
1380 IF ERL < 120 OR ERL> 180 THEN 120 ELSE 200

²ロ

The screen display（and eventual output） defaults to upper case（capitals）．Lowercase （small）characters can be entered by releasing a cap lock using SHIIFT \emptyset ．Lowercase text is shown by standard reverse field display．

The general editing controls follow the guidelines given previously．Text is edited in the work area towards the bottom of the screen－the upper part of the screen is for viewing text stored in memory．The cursor keys play an important part in moving over the text to allow editing．The left and right cursor keys enable you to move along the text line in the work area－pressing SHIFT simul－ taneously with left cursor＇toggles＇the cursor either to the start or to the end of the line．

Further characters can be inserted at any point in the work area text by moving the cursor to the right of the chosen point．You cannot overwrite characters．To delete an error，position cursor over character and press down arrow．

To enter＇editor＇mode press up arrow．The cursor automatically locates the last＇access＇ position which is indicated by a flashing $>$ marker．The editor automatically returns to the last position of the marker．

Once in editor mode you can inspect the text in memory by scrolling upwards or downwards using up arrow and down arrow keys．Bigger（ten line）jumps are possible by pressing keys U （＇up＇）and D （＇down＇）．

Lines of text can be deleted by positioning the marker and pressing the SHIFT and down arrow keys simultaneously．Blank lines can be inserted only in entry mode pressing ENTER with a blank line in the work area．

The line immediately above the marker can be copied to the work area（ready for editing） by pressing C in editor mode．The amended line does not automatically replace the original line when it is returned－the latter has to be deleted afterwards．You can escape from editor mode simply by pressing RETURN．This returns you to the edit mode， where［CLEAR］returns you to the edit mode menu．

```
2500 PM = 5:IF CP < 5 THEN PM = CP
2510 TB$ = INKEY$:IF TB$ ="" THEN
    PRINT@PM*32,"":PRINT@PM*32,
    ">":GOTO2510
2520 CP = CP + (TB$ = " '") - (TB$ =
    CHR$(10)) +10"((TB$ = "U") -
    (TB$ = "D"))
2 5 3 0 ~ I F ~ C P ~ < 1 ~ T H E N ~ C P ~ = 1 ~
2540 IF CP > TL THEN CP = TL
2550 GOSUB2090
2560 IF TB$ = CHR$(13) THEN RETURN
```


－With this program you can key text in a word at a time，press RETURN，and still end up with continuous text on the print out． But beware，if you don＇t remember to insert spaces at the end of each word，the words will be printed out as one solid line and you＇ll end up with gobbledegook． This is an easy mistake to make as spaces are not visible on the screen and can easily be forgotten．

2570 IF CP >1 AND TB $\$=$ CHR $\$(91)$
THEN TL $=\mathrm{TL}-1$ ：FORK $=\mathrm{CP}-1$ TO
TL：TX\＄（K）＝TX\＄（K＋1）：NEXT：TX\＄
$(\mathrm{TL}+1)=" ": \mathrm{CP}=\mathrm{CP}-1:$ GOSUB2090
2580 IF CP >1 AND TB $\$=$＂C＂THEN
FORK＝ 32 TO 1 STEP－1：IF MID\＄
（TX\＄（CP－1），K，1）＝＂＂THEN
NEXT ELSE A\＄＝LEFT\＄（TX\＄（CP－1），
K）＋＂＂：RETURN
2590 IF TB $\$=$＂ S ＂GOSUB5070
2600 IF TB $\$=$＂$@$＂THEN SF $=$ SF $+1: 1 F$
SF＝ 1 THEN SS＝CP ELSE
$\mathrm{SE}=\mathrm{CP}: \mathrm{SF}=\emptyset: \mathrm{GOSUB513} \varnothing$
2610 GOTO 2500
3000 RETURN＇TEMPORARY LINE
4000 CLS：IF TL＝ 1 THEN PRINT＠7，
＂nothing to save＂：FORZ＝ 1 TO1000：
NEXT：RETURN
4010 CLS：LINEINPUT＂FILENAME ？＂；F\＄
4020 IF LEFT $(\mathrm{F} \$, 1)$＜＂A＂OR LEFT\＄
（F\＄，1）＞＂Z＂THEN 4010
4030 IF TS $=1$ THEN 4120
4040 CLS：MOTORON：AUDIO ON：PRINT
＂POSITION TAPE，THEN PRESS enter＂

ELSE MOTOROFF：AUDIO OFF：PRINT
＂PLACE RECORDER IN RECORD MODE
－पロTHEN PRESS enter＂
4060 IF INKEY\＄＜＞CHR\＄（13）THEN 4060
4070 MOTORON：FORK＝1T01000：NEXT：
OPEN＂0＂，\＃－1，F\＄
4080 PRINT \＃－1，CP，TL
4090 FOR K＝1 TO TL－1：PRINT \＃－1，
TX\＄（K）：NEXT
4100 CLOSE \＃－ 1
4110 RETURN
4120 CLS：PRINT＂ENSURE DRIVE IS ON AND
A DISCDCDIS INSERTED．PRESS enter
TOロロロロロCONTINUE＂
4130 IF INKEY\＄＜＞CHR\＄（13）THEN 4130
4140 CREATE F\＄
4150 FWRITE F\＄；CP：FWRITE F\＄；TL
4160 FOR K＝1 TO TL－1
4170 FWRITE F\＄；TX\＄（K）
4180 NEXT：RETURN

4500 CLS：PRINT＠8，BL\＄；＂load＂；BL\＄；
＂a＂；$B L \$$ ；＂file＂；$B L \$: I F T L=1$ THEN 4540
$451 \emptyset$ PRINT＂ARE YOU SURE（Y／N）？＂
4520 R $\$=$ INKEY ：IF R $\$<>$＂$Y$＂AND
R $\$$＜＞＂N＂THEN 4520
4530 IF R $\$=$＂N＂THEN RETURN
4540 CLS：LINEINPUT＂INPUT
FILENAME ？＂；F\＄
4550 IF LEFT $(F \$, 1)$＜＂A＂OR LEFT\＄
（F\＄，1）＞＂Z＂THEN 4540
4560 IF DL $=1$ THEN 4650
4570 MOTORON：AUDIOON：PRINT
＂POSITION TAPE，PUT INTO PLAY MODE，
THEN PRESS enter＂
4580 IF INKEY $~<~>~ C H R \$ ~(13) ~ T H E N ~ 4580 ~$
4590 OPEN＂I＂，\＃－1，F\＄
4600 INPUT \＃－1，CP，TL
4610 FORK $=1$ TOTL $-1:$ INPUT \＃-1, TX\＄（K）：
NEXT
4620 CLOSE \＃－1：GOSUB2090
4630 TX\＄（TL）$=$ STRING\＄$(32,126)$

4640 RETURN

4650 FREAD F\＄，FROM＠；CP：FREAD F\＄；TL
4660 FORK＝ 1 TO TL－1：FLREAD F\＄；TX\＄（K）
4670 NEXT：RETURN
5000 CLS：PRINT＠10，BL\＄；＂；＂；CHR\＄
（124）；＂0＂；BL\＄；＂setup＂；BL\＄：PRINT
＠96，＂LOAD FROM（T）APE OR
（D）ISC ？＂；
$5010 \mathrm{~B} \$=$ INKEY $:$ IF B\＄＜＞＂T＂AND
B \ll＞＂D＂THEN 5010
5020 PRINTB $\$: D L=0: I F B \$=$＂D＂THEN
$\mathrm{DL}=1$
5030 PRINT：PRINT＂SAVE TO（T）APE OR
（D）ISC ？＂；
5040 BS＝INKEY\＄：IF B $\$<>$＂T＂AND
B\＄＜＞＂D＂THEN 5040
5050 PRINTB $: T S=\emptyset: I F B \$=$＂D＂THEN $T S=1$

5060 RETURN

5070 RETURN＇TEMPORARY LINE
5130 RETURN＇TEMPORARY LINE
5500 CLS：PRINT＠8，BL\＄；＂printer＂；
BL\＄；＂setup＂；BL\＄
5510 PRINT＠128，；：INPUT＂MAX．LINE
WIDTH＂；MW：MW＝INT（MW）：IF MW＜1
THEN 5510
5520 INPUT＂LINE WIDTH REQUIRED＂；
TW：TW $=\operatorname{INT}(T W): I F T W<1$ OR TW $>M W$
THEN 5520
5530 INPUT＂PAGE LENGTH＂；PL：PL＝
INT（PL）：IF PL＜ 1 THEN 5530
5540 INPUT＂TEXT LENGTH＂；TH：TH＝
INT（TH）：IF TH＜ 1 OR TH＞PL THEN 5530
$5550 \mathrm{GP}=\operatorname{INT}((\mathrm{MW}-\mathrm{TW}) / 2): \mathrm{LF} \$=$ STRING $\$$
（INT（（PL－TH）／2），13）
5560 PRINT：PRINT：PRINT＂IS THIS OK
（Y／N）？＂
5570 R $\$=$ INKEY $: I F R \$<>$＂N＂AND
R\＄＜＞＂Y＂THEN 5570
5580 IF $\mathrm{R} \$=$＂$\gamma$＂THEN RETURN ELSE 5500

COMPUTERCONTROLLED ROBOTS

Following in the wake of the Micro

 Revolution, the Age of Robotics has now dawned, not with the powerseeking monsters of fiction, but with helpful peripheralsDr Frankenstein implanted a brain into a creation from the graveyard. If the mad doctor had used the brain of a computer and the body of a cyborg he would have saved himself much trouble and probably earned a Queen's Award to Industry.

Just as the human brain communicates with the outside world through the five senses for input, and through speech and movement for output-so an electronic brain needs to be linked to input and output channels. Your computer is already linked to the usual input and output devices-at least a keyboard or joystick and a monitor or TV set-but it is an ideal 'brain' for a wide range of other mechanical and electronic devices, which can provide the computer with 'senses' to receive data from the outside world.

The computer can provide 'intelligence' for a mechanical device. Connected to a typewriter (or keyboard and printer) a computer becomes a word processor; with an electronic organ, it becomes a synthesiser; linked to a vacuum cleaner, you have a robot that cleans the carpet.

Generally, computers have at least one input/output port through which they can communicate with external, mechanical devices. There are two types of port: serial and parallel, which differ according to how they handle data. In most home computers, including all those covered here, one byte of memory contains eight bits of informationhence the name ' 8 -bit micro'. The information stored in a byte is in a string of eight \emptyset s and 1 s -for example, $\emptyset \emptyset 1 \emptyset 11 \emptyset 1$.

The computer has its own internal 'memory map', in which there are two bytes of memory labelled specially for the input/output port. The first byte is the Data Direction Register (DDR). This determines the status of the port, dictating whether channels are used for input or output. On the Vic 20 for example, the address of the DDR is 37138. Its value is set using the POKE com-
mand. POKE 37138,255 sets the value to 11111111-the binary equivalent of 255 . A 1 means that a channel is transmitting data; a \emptyset means it is receiving. So the above POKE command sets all eight channels at the user port to output. POKE 37138,15 sets the value to 00001111 , which means that the first four channels are set to receive and the second four to transmit. The other computers work in a similar way, although the specific addresses to POKE are different, of course.
The second byte that controls the port is the port address. Any string of \emptyset s and 1 s in the port address can be converted by a chip on the interface board into a series of electronic voltages at the port. These voltages are then passed on to the device. At a parallel port this information passes along eight separate wires simultaneously, but at a serial port the information passes along one wire in separate bursts.

When the information reaches its destination, it is used to control various operations. Typically, in operating an electro-mechanical device such as a robot, it is used to switch different motors on and off to carry out specific functions. By setting the value of the port address, you can send signals to specific destinations. For example, if the value is set to ©0110111, a signal is sent along the 3rd, 4th, 6th, 7th and 8th wires at a parallel port, or to the 3rd, 4th, 6th, 7th and 8th destinations through a serial port.

	ARTIFICIAL INTELLIGENCE
\square	BINARY CODING
\square	TYPES OF ROBOT
	ROBOT ARMS
	PRICE RANGES

As a means of teaching the principles of programming, as well as school geometry, the Turtle and LOGO are highly successful. The remarkably good results are due in part to the affection children and adults alike have for the 'animal', which has the effect of making the subject less abstract, more understandable and, above all, a great pleasure to learn and use

TYPES OF ROBOT

Many industries use robots in situations dangerous to human beings, such as handling radioactive materials, toxic or explosive chemicals, or substances at extreme tempera-
tures. Robots are also used in repetitive, monotonous tasks, such as paint spraying, mechanical assembly and sorting. But the use of robots is not restricted to industry. Several

reasonably priced robots can be controlled from a home computer. They can see, read bar codes, draw, teach a high level programming language, and manipulate objects. There are two main categories of robots suitable for home micros-robotic arms, and floor turtles and buggies. These are supplied with 'user friendly' software, requiring no specific knowledge by the user.

Robotic arms are modelled on the human arm. They can have as many as five points of movement: four of these represent the shoulder, elbow, wrist and grip. The fifth, at the arm base, gives the arm the facility to 'swivel about the hips'. Popular arms vary in price from about the price of a game on disk to about 100 times as much, so the level of sophistication is governed by how much you spend.

Armatron is one of the least expensive robotic arms. It is not programmable, so it is a sophisticated toy rather than a true robot. It is driven by a battery powered electric motor and controlled by two joysticks. At the other end of the range are Hero 1 and Genesis P101, which have their own on-board computer and are available in kit form.

In the middle of the price range (costing as much as a BBC B), Armdroid 1 is interfaced to all the computers. It is powered by six stepper motors and has five points of movement. It can raise, lower and rotate the wrist. The arm can be controlled in 'immediate' mode from the keyboard, or programmed by storing a string of arm positions in the computer memory. Movements can be run continuously or a step at a time. Pauses can be added, the arm speed altered, and routines edited. The program to move the arm is written in BASIC, with machine code calls which control the motors. The Armdroid's manufacturers provide a listing and explanation of the BASIC program, so you can modify it to suit yourself. Another electrically powered arm is the Micro Grasp, which can be interfaced to the Spectrum, Dragon and BBC.

If these are too expensive an introduction to robotic arms, try Beasty-a rather more generalized control system consisting of a small black plastic box with a row of five connectors along one edge. One of the connectors is for input, and accepts a three-core cable from a user port on your computer. As yet, Beasty is only inferfaced to the BBC B, but interfaces for other home micros will soon become available.

Each of the other four connectors is for a servo unit-a high quality motor which provides feedback. The servo motors connect to Beasty with the same three-core cable that
connects Beasty to the computer. In this form, Beasty is not yet a complete robot, but it has the great merit of flexibility, since the servos can be used to control almost any equipment to which they are capable of being fixed, within reach of the wires. Possible applications include all sorts of models-they have even been used for film 'monsters'-and of course robot arms. These may be home made, but Beasty's makers in fact supply a complete arm ready for attachment.
The Beasty robotic arm is powered by up to four servos. It is made with aluminium rods and plastic mouldings mounted on a metal base, and can be assembled in a number of configurations. The arm has three axes of movement plus a simple grip, and moves like a human arm with rigid wrist and hips. There is one servo for each point of movement and one for the gripper.

CONTROLLING BEASTY

Beasty's manufacturers have created a language called ROBOL to control the servos. Each program line consists of a series of instructions telling all the individual servos to make a single movement, and by how much. A complex operation can thus be broken down into a series of movements, each controlled by one program line. ROBOL is loaded from cassette and the following display appears on the screen:
ROBOL: Interactive robot controller
1 MOVE $500 \quad 500 \quad 500 \quad 500$

Editing

This prompts you to enter the instructions which form the first program line. You do this directly from the keyboard, and the Beasty responds directly to the instructions. If you now press 1, for example, the servo plugged into position \emptyset on Beasty moves, and the value of the first $5 \emptyset \emptyset$ on the display is increased. Pressing Q will cause the same servo to move in the opposite direction, and decrease the value of the first number. Pressing SHIFT with 1 or Q causes the values to change more quickly. Keys 2 and W, 3 and E, 4 and R, give you similar control over the movements of the remaining three servos.

Set the values of the servos, press RETURN and the screen will look something like this:

$$
\begin{array}{lllll}
1 \text { MOVE } & 24 & 344 & 920 & 460 \\
2 \text { MOVE } & - & - & -
\end{array}
$$

The computer has stored the values on Line 1 in its memory and is waiting for the values for Line 2. Carry on in the same way and you might produce something like this:

1 MOVE	24	344	920	460
2 MOVE	-	-	200	-
3 MOVE	-	120	-	324

A dash indicates that a servo does not move on that particular line. In Line 2 of the above program, only the third servo moves. In Line 3 , the second and fourth servos move.

There are other keywords as well as MOVE. Using JUMP makes the servo jump to its new position, a more violent action than MOVE. WAIT followed by a value causes the program to pause for a set time.

Programs can be saved on disk or tape, under the filename LIFT, for example, by pressing ESCAPE and then typing SAVE "LIFT".

Also on the tape is a machine code program called Driver which can be positioned anywhere in the computer's memory and incorporated in BASIC routines. Driver is called with the X register containing the Beasty channel number, and the Y register giving the new value for that servo. On the BBC, Driver is loaded at location $\& 28 \emptyset \emptyset$ by typing:

*LOAD DRIVER 2800

The next line would be:
DRIVER $=\$ 2800$
which allows Driver to be called by name. So your BASIC program would begin with CALL DRIVER, to synchronize the Drivers with the computer (to initialize them).
The following program, is a typical example of how Driver can be called into a BASIC routine. But don't actually enter this, as it is only an example:

10 CALL DRIVER

20 REM INITIALISES DRIVER
30 PRINT "DO YOU WANT AN APPLE OR AN ORANGE?"
40 INPUT A\$
50 IF A\$ = "APPLE" THEN 100 ELSE IF A $\$=$ "ORANGE" THEN 200
100 X\% = 0
110 REM SET SERVO TO TURN BASE
120 Y\% = 150
130 REM TURNS BASE TO FACE APPLE
140 CALL DRIVER + 3
150 REM UPDATES SERVO X\% TO VALUE Y\%
160 GOSUB 910
170 END
$200 \mathrm{X} \mathrm{\%}=0$
210 Y\% = \varnothing
220 REM TURNS BASE TO FACE ORANGE
230 CALL DRIVER + 3
240 GOSUB 910
900 REM ROUTINE TO LIFT FRUIT

910 X\% = 1
920 REM SET SERVO TO LIFT LOWER SECTION OF ARM
$93 \emptyset \mathrm{Y} \%=2 \emptyset \emptyset$
940 REM LIFT LOWER ARM
950 CALL DRIVER + 3
960 X\% = 2
970 REM SET SERVO TO TOP SECTION OF ARM
980 Y\% = 50
$99 \emptyset$ REM LOWER ARM TOP
1000 CALL DRIVER + 3
$1010 \mathrm{X} \%=3$
1020 REM SET SERVO TO CLOSE GRIP
1030 Y\% = 260
1040 REM CLOSE GRIP
1050 CALL DRIVER + 3
1060 X\% = 2
1070 REM SET SERVO TO TOP OF ARM
1080 Y\% = 255
1090 REM RAISE FRUIT
$200 \emptyset$ CALL DRIVER + 3
2010 RETURN
The program offers the user a choice between an apple or an orange, placed in predetermined positions in front of the Beasty arm, so the arm can move and lift the desired fruit. The positional settings depend on the way in which the arm is constructed.

OTHER FACILITIES

You can fit the Beasty arm with an electronic camera called Snap and enable your micro to 'see'. Snap contains a light sensitive chip, which transfers an image to the monitor or TV set at a resolution of 128×256. It weighs less than 45 g , measures $8 \times 10 \mathrm{~cm}$ and can take up to 20 frames per second.

There are several interesting programs supplied with Snap. The program for displaying what the camera sees is called EV1. A particular frame can be kept as a still, and saved on tape or disk. And you can dump the picture on the screen to a printer. A program called Movie allows you to record and replay a series of 20 frames, creating a primitive animation sequence. One program that many users may find useful is Secure, which detects a change between a stored picture and the scene the camera is filming. This can be used as a kind of burglar alarm. When the picture has changed more than a preset amount, indicating an intruder, an alarm sounds and the program displays a graph of the number of alarms over a period of time. Another program with obvious applications in education and industry is Animal, which provides a method for the computer to recognize shapes and objects. Names are entered for different shapes. When the computer recogn-
izes a shape, it prints out the name.
The robotic arm becomes remarkably versatile when it is mounted on a Beasty tractor base. Two servos control the direction and speed of the base engines. This only leaves two motors for the arm, but a 7 servo Beasty is under development to allow a fully operational arm to be transported on the base. Instructions travel down a spring wound cable.

THE TURTLE

One computer controlled robot that is becoming a familiar sight in primary schools is the Turtle-a cybernetic animal with a pen in its belly. The Turtle moves around the floor mimicing the graphic images on the screen. It can raise and lower its pen and be taught to draw intricate pictures and designs.

Turtles have been around for some years but have been used mostly in universities with mainframe computers. They were specifically designed to teach the programming language LOGO, which has only recently become available for microcomputers but most versions allow you to use BASIC as well. LOGO is a high level language that is particularly easy to learn. It is accessible to children as young as four years, which explains the interest from schools.

There are versions of LOGO for all the computers.
The first Turtle appeared at the Massachusetts Institute of Technology in the late 1960 s, the brainchild of computer genius Seymour Papert. The first British Turtle came from Edinburgh University. It had a Meccano frame and was not accurate, but an improved version, called the Edinburgh Turtle, has since been manufactured. It is connected to the computer and power source by an umbilical cord.

Recently the Edinburgh Turtle has been upstaged by the remote-controlled Valiant Turtle. This is controlled by infra-red signals and powered by rechargable nickel cadmium batteries. Problems associated with the umbilical cord, such as it twisting and pulling the Turtle off course, are eliminated from the new remote-control version. LOGO commands are keyed into the computer where a software interface converts them into binary code. This information goes to an infra-red transmitter. The turtle picks up the signal on its infra-red receiver, and the Turtle's logic control instructs motors controlling the wheels and pen mechanism. The device actually looks like a turtle, so makes it easier for children to give directional instructions. The Turtle's eyes illuminate, serving as power indicators, dimming when the batteries need
recharging. The Valiant Turtle is compatible with all versions of LOGO and is supplied with its own Turtle Graphics software so you can use BASIC if you wish. It runs on the Spectrum, ZX 81, Commodore 64, BBC B and Vic 20.

There is a second species of Turtle which inhabits the monitor. This is the screen Turtle, which sometimes looks like a tiny turtle and sometimes like a chevron. The instructions that control the floor Turtle also operate the screen turtle. Typical LOGO instructions are:
FD 200 (this moves the Turtle $2 \emptyset \emptyset$ units forward)
RT 60 (this turns the Turtle right through 60 degrees)
LT $9 \emptyset$ (this turns the Turtle $9 \emptyset$ degrees to the left)
PU (this raises the pen)
PD (this lowers the pen)
To draw a triangle, with sides 200 units long the instructions you type could be:

FD 200
RT 120
FD 200
RT 120
FD 200
RT 120
This could be written more economically as:
REPEAT 3 (FD 200 RT 120)
END
After defining TRIANGLE, the word becomes part of the Turtle's vocabulary. So whenever you type TRIANGLE, it will draw a triangle with sides 200 units long.
The key word TRIANGLE can be used to define a new procedure:

TO PATTERN

REPEAT 12 (TRIANGLE RT 30)
END
The keyword PATTERN could then be used in the definition of another procedure, and so on to make a complicated pattern. It is easy to see how you could define a routine to draw a leaf, for example, then another to define a branch, a tree then a forest.

LOGO is a versatile language which can perform mathematical functions, and be used to create music. Coupled with the Turtle it makes learning computer programming fun. So the entire family can play Frankenstein, and transplant the computer's brain into mechanical devices. In doing so, they would have watched science fiction become science fact in the living room.

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

COMING IN ISSUE 29....

In MACHINE CODE, there's the start of CLIFFHANGER, a complete ARCADE GAME. As it builds up, you'll learn all about the routines, and create a game
\square For intellectual types, there's a fun WORD GAME that is easy to program in BASIC and lets you play your friends at any level you want to set

Continuing the mathematical

 background to computing, learn how to use CONIC SECTIONS IN PRACTICAL DEMONSTRATIONS\square There's a simple MACHINE CODE routine with instant results-it turns your TV screen into a DIGITAL CLOCK

\square To complete the TEXT EDITOR, are

 SORT, SEARCH and FORM LETTER routines plus thf PRINTOUT facility

[^0]: -

 17 LET an $=60$
 28 GOSUB 1000
 30 PLOT $127+x t, 70+y t$
 55 GOSUB 1000

[^1]: 1000 BORDER 6：PAPER 6：INK 0：CLS 1010 PRINT PAPER 1；INK 6；AT 3，4；
 ＂\square RESEARCH \＆DEVELOPMENT \square＂；
 AT 4，4；＂（to lower mining costs）＂ 1020 PRINT AT 7，6；＂How much would you＂；TAB 5；＂like to invest ？（\＄）＂：INPUT rd 1050 LET $a(m, 4)=a(m, 4)-$ INT（rd．．05）－ 1 $1 \emptyset 60$ IF $a(m, 4)<\emptyset$ THEN LET $a(m, 4)=\emptyset$ 1080 LET a $(\mathrm{m}, 2)=\mathrm{a}(\mathrm{m}, 2)-\mathrm{rd}$ ：LET $a(m, 1)=a(m, 1)-r d$
 1100 PRINT AT 13，3；＂‘Your mining costs will be＂；TAB 3；＂reduced by \＄＂；INT
 （rd＂．05）+1 ；＂\square per 200m＂
 1110 FOR $z=1$ TO 300：NEXT z
 1120 RETURN

 1000 POKE53280，7：POKE53281，7：
 PRINT＂回 ${ }^{(1)}$
 1010 PRINT＂${ }^{\text {S RRESEARCH AND }}$
 DEVELOPMENT＂：PRINT＂（TO LOWER
 MINING COSTS）＂

 WOULD YOU LIKE TO INVEST
 （\＄）＂：INPUTRD
 $1030 \mathrm{R} 1=\operatorname{INT}\left(\mathrm{RD}^{*} .5\right)-1$
 $1050 A(M, 4)=A(M, 4)-R 1$
 1060 IFA（ $\mathrm{M}, 4$ ）$<\emptyset$ THENA $(\mathrm{M}, 4)=\emptyset$
 $1080 A(M, 2)=A(M, 2)-R D: A(M, 1)$ $=A(M, 1)-R D$
 YOUR MINING COSTS WILL BE REDUCED

[^2]: －
 4000 PAPER 6：INK 1：BORDER 6：CLS
 4020 PRINT INVERSE 1；AT 2，7；＂\square EXCHANGE AGENCY $\square ": P R I N T$ AT 6，Ø；＂The current exchange rate is：－＂；AT 8,$5 ; " 1 \mathrm{~kg}$ of

[^3]: 1 PRINT " $\mathbf{\square} \mathbf{= 1}$ ";TAB(9);"THIS IS A DEMO PROGRAM"
 2 FOR $Z=1$ TO 10:@CSET($)$: FOR ZZ = 1 TO 100:NEXT ZZ
 3 @CSET(1):FOR ZZ = 1 TO 100:

[^4]: 670 TB = GET
 $680^{\circ} \mathrm{FX} 21, \varnothing$
 690 REM
 $700 C P=C P+((T B=139)-(T B=138))^{*}$ (1-9+ $\operatorname{INKEY}(-1)$)
 710 IF CP <1 THEN CP $=1:$ GOTO 790
 720 IF CP > TL THEN CP = TL:GOTO 790
 730 IF TB >31 AND TB $<1280 \mathrm{RTB}=130 \mathrm{R}$
 $T B=136$ OR TB $=137$ THEN RETURN
 740 IF $C P>1$ AND TB $=4$ THEN TL=
 TL-1:FOR K = CP - 1 TO TL:TX\$(K)
 $=T X \$(K+1):$ NEXT:TX\$(TL+1) =
 "":CP = CP - 1:GOTO 790

